Serial.parseInt
is a blocking function. That means it waits for valid serial input until it times out. Because of this, any other action in loop
has to wait too. Reading user input in setup
works only once though, so it never asks the user for input again.
To avoid this, you'll have to check the serial buffer, and then read each byte individually, while also doing the LED blinking in the main loop.
Another thing to avoid now, is the use of the delay
function, because it also hangs the entire main loop (including the serial readings) for the given parameter time. You can still blink the LED by using timestamp intervals.
For a nice example of a non-blocking serial read, we can use this sample from the Arduino docs. Additionally, for another nice example of an LED-blinking sketch without using delay
, we can use the BlinkWithoutDelay sample from the Arduino docs too.
String inString = "";
unsigned long previousMillis = 0;
int delayTime = 0;
int ledState = LOW;
int ledPin = 13;
void nonBlockingSerialReadDelayTime() {
while (Serial.available() > 0) {
int inChar = Serial.read();
if (isDigit(inChar)) {
// convert the incoming byte to a char and add it to the string
inString += (char)inChar;
}
// if you get a newline (user pressed ENTER on the serial console)
if (inChar == '\n') {
// set our new delay time
delayTime = inString.toInt();
// clear the string for new input
inString = "";
// ask user again
Serial.print(" Enter delay time: ");
}
}
}
void blinkLED() {
unsigned long currentMillis = millis();
if (currentMillis - previousMillis >= delayTime) {
// save the last time you blinked the LED
previousMillis = currentMillis;
// if the LED is off turn it on and vice-versa
if (ledState == LOW) {
ledState = HIGH;
} else {
ledState = LOW;
}
// set the LED with the ledState of the variable
digitalWrite(ledPin, ledState);
}
}
void setup() {
pinMode(ledPin, OUTPUT);
Serial.begin(9600);
while (!Serial.available());
Serial.print(" Enter delay time: ");
}
void loop() {
nonBlockingSerialReadDelayTime();
blinkLED();
}