In its common variant, this problem imposes 2 constraints and it can be done in an easier way.
- If the partition can only be done somewhere along the length of the array (we do not consider elements out of order)
- There are no negative numbers.
The algorithm that then works could be:
- Have 2 variables, leftSum and rightSum
- Start incrementing leftSum from the left, and rightSum from the right of the array.
- Try to correct any imbalance in it.
The following code does the above:
public boolean canBalance(int[] nums) {
int leftSum = 0, rightSum = 0, i, j;
if(nums.length == 1)
return false;
for(i=0, j=nums.length-1; i<=j ;){
if(leftSum <= rightSum){
leftSum+=nums[i];
i++;
}else{
rightSum+=nums[j];
j--;
}
}
return (rightSum == leftSum);
}
The output:
canBalance({1, 1, 1, 2, 1}) → true OK
canBalance({2, 1, 1, 2, 1}) → false OK
canBalance({10, 10}) → true OK
canBalance({1, 1, 1, 1, 4}) → true OK
canBalance({2, 1, 1, 1, 4}) → false OK
canBalance({2, 3, 4, 1, 2}) → false OK
canBalance({1, 2, 3, 1, 0, 2, 3}) → true OK
canBalance({1, 2, 3, 1, 0, 1, 3}) → false OK
canBalance({1}) → false OK
canBalance({1, 1, 1, 2, 1}) → true OK
Ofcourse, if the elements can be combined out-of-order, it does turn into the partition problem with all its complexity.