So here is a sample data from your code with the output, label and loss having the following values
outputs = tensor([[ 0.5968, -0.8249, 1.5018, 2.7888, -0.6125],
[-1.1534, -0.4921, 1.0688, 0.2241, -0.0257],
[ 0.3747, 0.8957, 0.0816, 0.0745, 0.2695]], requires_grad=True)requires_grad=True)
labels = tensor([3, 2, 1])
loss = tensor(0.7354, grad_fn=<NllLossBackward>)
So let's examine the values,
If you compute the softmax output of your logits (outputs), using something like this torch.softmax(outputs,axis=1) you will get
probs = tensor([[0.0771, 0.0186, 0.1907, 0.6906, 0.0230],
[0.0520, 0.1008, 0.4801, 0.2063, 0.1607],
[0.1972, 0.3321, 0.1471, 0.1461, 0.1775]], grad_fn=<SoftmaxBackward>)
So these will be your prediction probabilities.
Now cross-entropy loss is nothing but a combination of softmax and negative log likelihood loss. Hence, your loss can simply be computed using
loss = (torch.log(1/probs[0,3]) + torch.log(1/probs[1,2]) + torch.log(1/probs[2,1])) / 3
, which is the average of the negative log of the probabilities of your true labels. The above equation evaluates to 0.7354, which is equivalent to the value returned from the nn.CrossEntropyLoss module.