I am loading a Dataframe from an external source with the following schema:
|-- A: string (nullable = true)
|-- B: timestamp (nullable = true)
|-- C: long (nullable = true)
|-- METADATA: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- M_1: integer (nullable = true)
| | |-- M_2: string (nullable = true)
| | |-- M_3: string (nullable = true)
| | |-- M_4: string (nullable = true)
| | |-- M_5: double (nullable = true)
| | |-- M_6: string (nullable = true)
| | |-- M_7: double (nullable = true)
| | |-- M_8: boolean (nullable = true)
| | |-- M_9: boolean (nullable = true)
|-- E: string (nullable = true)
Now, I need to add new column, METADATA_PARSED, with column type Array and the following case class:
case class META_DATA_COL(M_1: String, M_2: String, M_3, M_10:String)
My approach here, based on examples is to create a UDF and pass in the METADATA column. But since it is of a complex type I am having a lot of trouble parsing it.
On top of that in the UDF, for the "new" variable M_10, I need to do some string manipulation on the method as well. So I need to access each of the elements in the metadata column.
What would be the best way to approach this issue? I attempted to convert the source dataframe (+METADATA) to a case class; but that did not work as it was translated back to spark WrappedArray types upon entering the UDF.