2
votes

I'm attempting to train a Unet to provide each pixel of a 256x256 image with a label, similar to the tutorial given here. In the example, the predictions of the Unet are a (128x128x3) output where the 3 denotes one of the classifications assigned to each pixel. In my case, I need a (256x256x10) output having 10 different classifications (Essentially a one-hot encoded array for each pixel in the image).

I can load the images but I'm struggling to convert each image's corresponding segmentation mask to the correct format. I have created DataSets by defining a map function called process_path which takes a saved numpy representation of the mask and creates a tensor of dimension (256 256 10), but I get a ValueError when I call model.fit, telling me that it cannot call as_list because the shape of the Tensor cannot be found:

# --------------------------------------------------------------------------------------
# DECODE A NUMPY .NPY FILE INTO THE REQUIRED FORMAT FOR TRAINING
# --------------------------------------------------------------------------------------
def decode_npy(npy):
  filename = npy.numpy()
  data = np.load(filename)
  data = kerasUtils.to_categorical(data, 10)
  return data

# --------------------------------------------------------------------------------------
# DECODE AN IMAGE (PNG) FILE INTO THE REQUIRED FORMAT FOR TRAINING
# --------------------------------------------------------------------------------------
def decode_img(img):
  img = tf.image.decode_png(img, channels=3)
  return tf.image.convert_image_dtype(img, tf.float32)

# --------------------------------------------------------------------------------------
# PROCESS A FILE PATH FOR THE DATASET
# input - path to an image file
# output - an input image and output mask
# --------------------------------------------------------------------------------------
def process_path(filePath):
  parts = tf.strings.split(filePath, '/')
  fileName = parts[-1]
  parts = tf.strings.split(fileName, '.')
  prefix = tf.convert_to_tensor(maskDir, dtype=tf.string)
  suffix = tf.convert_to_tensor("-mask.png", dtype=tf.string)
  maskFileName = tf.strings.join((parts[-2], suffix))
  maskPath = tf.strings.join((prefix, maskFileName), separator='/')

  # load the raw data from the file as a string
  img = tf.io.read_file(filePath)
  img = decode_img(img)
  mask = tf.py_function(decode_npy, [maskPath], tf.float32)
  return img, mask

trainDataSet = allDataSet.take(trainSize)
trainDataSet = trainDataSet.map(process_path).batch(4)
validDataSet = allDataSet.skip(trainSize)
validDataSet = validDataSet.map(process_path).batch(4)

How can I take each images' corresponding (256 256 3) segmentation mask (stored as png) and convert it to a (256 256 10) tensor, where the i-th channel represents the pixels value as in the tutorial? Can anyone explain how this is achieved, either in the process_path function or wherever it would be most efficient to perform the conversion?

Update:

Here is an example of a segmentation mask. Every mask contains the same 10 colours shown:

enter image description here

2
Can you post an example segmentation mask? Is it a png with only 10 pixel values?Tom C
I've added an example segmentation mask. That's right, they're all pngs with 10 pixel values and the same size 256x256 pixels.CSharp

2 Answers

3
votes
import numpy as np
from cv2 import imread

im = imread('hfoa7.png', 0) # read as grayscale to get 10 unique values
n_classes = 10
one_hot = np.zeros((im.shape[0], im.shape[1], n_classes))
for i, unique_value in enumerate(np.unique(im)):
    one_hot[:, :, i][im == unique_value] = 1

hfao7 is the name of the image you posted. This code snippet creates a one-hot matrix from the image. You will want to insert this code into decode_npy(). However, since you sent me a png, the code above won't work with a npy file. You could pass in the names of the pngs instead of the npys instead. Don't worry about using kerasUtils.to_categorical - the function I posted makes categorical labels.