С++ have a very efficient algorithm to calculate eigenvalues and eigenvectors in MKL library with function dgeev. But it calculates all Eigenvalues, and all left and rirhgt eigenvectors.
Eigenvalues ( 2.86, 10.76) ( 2.86,-10.76) ( -0.69, 4.70) ( -0.69, -4.70) -10.46
Left eigenvectors ( 0.04, 0.29) ( 0.04, -0.29) ( -0.13, -0.33) ( -0.13, 0.33) 0.04 ( 0.62, 0.00) ( 0.62, 0.00) ( 0.69, 0.00) ( 0.69, 0.00) 0.56 ( -0.04, -0.58) ( -0.04, 0.58) ( -0.39, -0.07) ( -0.39, 0.07) -0.13 ( 0.28, 0.01) ( 0.28, -0.01) ( -0.02, -0.19) ( -0.02, 0.19) -0.80 ( -0.04, 0.34) ( -0.04, -0.34) ( -0.40, 0.22) ( -0.40, -0.22) 0.18
Right eigenvectors ( 0.11, 0.17) ( 0.11, -0.17) ( 0.73, 0.00) ( 0.73, 0.00) 0.46 ( 0.41, -0.26) ( 0.41, 0.26) ( -0.03, -0.02) ( -0.03, 0.02) 0.34 ( 0.10, -0.51) ( 0.10, 0.51) ( 0.19, -0.29) ( 0.19, 0.29) 0.31 ( 0.40, -0.09) ( 0.40, 0.09) ( -0.08, -0.08) ( -0.08, 0.08) -0.74 ( 0.54, 0.00) ( 0.54, 0.00) ( -0.29, -0.49) ( -0.29, 0.49) 0.16
For large matrices it takes a lot of time. Especially if you need to calculate eigenvectors for a large number of matrices.
So the main question is how can I calculate the only one eigenvector for real matrix only for one eigenvalue lambda = 1 as fast as possible? Or how I can solve the system of linear equations A-E=0, where A is a real matrix, E - Identity matrix. The eigenvector 100% exist and it consists only real numbers.