You said that your Users dataframe is huge and that "geohashes are likely to repeat, within and across idvalues". You didn't referred however if there might be duplicated geohashes in your shops dataframe.
If there are no repeated hashes in the latter, I think that a simple join would solve your problem:
val userDf = Seq(("id-1",2,"gcutjjn"),("id-2",2,"gcutjjn"),("id-1",3,"gcutjjn"),("id-1",5,"gcutjht")).toDF("idvalue","day_of_week","geohash")
val shopDf = Seq(("sid-1","kfc","gcutjjn"),("sid-2","mcd","gcutjhq"),("sid-3","starbucks","gcutjht")).toDF("shop_id","shop_name","geohash")
userDf.show
+-------+-----------+-------+
|idvalue|day_of_week|geohash|
+-------+-----------+-------+
| id-1| 2|gcutjjn|
| id-2| 2|gcutjjn|
| id-1| 3|gcutjjn|
| id-1| 5|gcutjht|
+-------+-----------+-------+
shopDf.show
+-------+---------+-------+
|shop_id|shop_name|geohash|
+-------+---------+-------+
| sid-1| kfc|gcutjjn|
| sid-2| mcd|gcutjhq|
| sid-3|starbucks|gcutjht|
+-------+---------+-------+
shopDf
.join(userDf,Seq("geohash"),"inner")
.groupBy($"geohash",$"shop_id",$"idvalue")
.agg(collect_list($"day_of_week").alias("days"))
.show
+-------+-------+-------+------+
|geohash|shop_id|idvalue| days|
+-------+-------+-------+------+
|gcutjjn| sid-1| id-1|[2, 3]|
|gcutjht| sid-3| id-1| [5]|
|gcutjjn| sid-1| id-2| [2]|
+-------+-------+-------+------+
If you have repeated hash values in your shops dataframe, a possible approach would be to remove those repeated hashes from your shops dataframe (if your requirements allow this), and then perform the same join operation.
val userDf = Seq(("id-1",2,"gcutjjn"),("id-2",2,"gcutjjn"),("id-1",3,"gcutjjn"),("id-1",5,"gcutjht")).toDF("idvalue","day_of_week","geohash")
val shopDf = Seq(("sid-1","kfc","gcutjjn"),("sid-2","mcd","gcutjhq"),("sid-3","starbucks","gcutjht"),("sid-4","burguer king","gcutjjn")).toDF("shop_id","shop_name","geohash")
userDf.show
+-------+-----------+-------+
|idvalue|day_of_week|geohash|
+-------+-----------+-------+
| id-1| 2|gcutjjn|
| id-2| 2|gcutjjn|
| id-1| 3|gcutjjn|
| id-1| 5|gcutjht|
+-------+-----------+-------+
shopDf.show
+-------+------------+-------+
|shop_id| shop_name|geohash|
+-------+------------+-------+
| sid-1| kfc|gcutjjn| << Duplicated geohash
| sid-2| mcd|gcutjhq|
| sid-3| starbucks|gcutjht|
| sid-4|burguer king|gcutjjn| << Duplicated geohash
+-------+------------+-------+
//Dataframe with hashes to exclude:
val excludedHashes = shopDf.groupBy("geohash").count.filter("count > 1")
excludedHashes.show
+-------+-----+
|geohash|count|
+-------+-----+
|gcutjjn| 2|
+-------+-----+
//Create a dataframe of shops without the ones with duplicated hashes
val cleanShopDf = shopDf.join(excludedHashes,Seq("geohash"),"left_anti")
cleanShopDf.show
+-------+-------+---------+
|geohash|shop_id|shop_name|
+-------+-------+---------+
|gcutjhq| sid-2| mcd|
|gcutjht| sid-3|starbucks|
+-------+-------+---------+
//Perform the same join operation
cleanShopDf.join(userDf,Seq("geohash"),"inner")
.groupBy($"geohash",$"shop_id",$"idvalue")
.agg(collect_list($"day_of_week").alias("days"))
.show
+-------+-------+-------+----+
|geohash|shop_id|idvalue|days|
+-------+-------+-------+----+
|gcutjht| sid-3| id-1| [5]|
+-------+-------+-------+----+
The code provided was written in Scala but it can be easily converted to Python.
Hope this helps!