Using scala-spark, I read a table in postgres and formed a dataframe: locationDF which contains data related to locations in the below format.
val opts = Map("url" -> "databaseurl","dbtable" -> "locations")
val locationDF = spark.read.format("jdbc").options(opts).load()
locationDF.printSchema()
root
|-- locn_id: integer (nullable = true)
|-- start_date: string (nullable = true)
|-- work_min: double (nullable = true)
|-- coverage: double (nullable = true)
|-- speed: double (nullable == true)
Initial Data:
+-------------+----------+-------------------+----------------+------------------+
| locn_id|start_date| work_min| coverage| speed|
+-------------+----------+-------------------+----------------+------------------+
| 3|2012-02-22| 53.62948333333333| 13.644|3.9306276263070457|
| 7|2012-02-22|0.11681666666666667| 0.0| 0.0|
| 1|2012-02-21| 22.783333333333335| 2.6| 8.762820512820513|
| 1|2012-01-21| 23.033333333333335| 2.6| 8.85897435897436|
| 1|2012-01-21| 44.98533333333334| 6.99| 6.435670004768718|
| 4|2012-02-21| 130.34788333333333| 54.67| 2.384267117858667|
| 2|2012-01-21| 94.61035| 8.909|10.619637445280052|
| 1|2012-02-21| 0.0| 0.0| 0.0|
| 1|2012-02-21| 29.3377| 4.579| 6.407010264249837|
| 1|2012-01-21| 59.13276666666667| 8.096| 7.303948451910409|
| 2|2012-03-21| 166.41843333333333| 13.048|12.754325056202738|
| 1|2012-03-21| 14.853183333333334| 2.721| 5.458722283474213|
| 9|2012-03-21| 1.69895| 0.845|2.0105917159763314|
+-------------+----------+-------------------+----------------+------------------+
I am trying to perform the sum of work_min (and convert into hours), sum of coverage, average speed of that particular year and month and form another dataframe. To do that, I have seperated the month and year from the date column: start_date as below and got two columns: year and month out of it.
locationDF.withColumn("year", date_format(to_date($"start_date"), "yyyy").cast(("Integer"))).withColumn("month", date_format(to_date($"start_date"), "MM").cast(("Integer")))
+-------------+----------+-------------------+----------------+------------------+----+-----+
| locn_id|start_date| work_min| coverage| speed|year|month|
+-------------+----------+-------------------+----------------+------------------+----+-----+
| 3|2012-02-22| 53.62948333333333| 13.644|3.9306276263070457|2012| 2|
| 7|2012-02-22|0.11681666666666667| 0.0| 0.0|2012| 2|
| 1|2012-02-21| 22.783333333333335| 2.6| 8.762820512820513|2012| 2|
| 1|2012-01-21| 23.033333333333335| 2.6| 8.85897435897436|2012| 1|
| 1|2012-01-21| 44.98533333333334| 6.99| 6.435670004768718|2012| 1|
| 4|2012-02-21| 130.34788333333333| 54.67| 2.384267117858667|2012| 2|
| 2|2012-01-21| 94.61035| 8.909|10.619637445280052|2012| 1|
| 1|2012-02-21| 0.0| 0.0| 0.0|2012| 2|
| 1|2012-02-21| 29.3377| 4.579| 6.407010264249837|2012| 2|
| 1|2012-01-21| 59.13276666666667| 8.096| 7.303948451910409|2012| 1|
| 2|2012-03-21| 166.41843333333333| 13.048|12.754325056202738|2012| 3|
| 1|2012-03-21| 14.853183333333334| 2.721| 5.458722283474213|2012| 3|
| 9|2012-03-21| 1.69895| 0.845|2.0105917159763314|2012| 3|
+-------------+----------+-------------------+----------------+------------------+----+-----+
But I dont understand how to perform an aggregation -> sum on two separate columns: work_hours & coverage, average value of the column: speed for that particular month all at the same time and obtain the result as below.
+----+-----+-------------+------------+-----------------+
|year|month|sum_work_mins|sum_coverage| avg_speed|
+----+-----+-------------+------------+-----------------+
|2012| 1|221.7617833 | 26.595 |11.07274342031118|
|2012| 2|236.2152166 | 75.493 |7.161575173745354|
|2012| 3|182.9705666 | 16.614 |6.741213018551094|
+----+-----+-------------+------------+-----------------+
Could anyone let me know how can I achieve that ?