So I tried to plot a contour in Julia by interpolating a 2D function, using the following code:
using Interpolations
using Plots
gr()
xs = 1:0.5:5
ys = 1:0.5:8
# The function to be plotted
f(x, y) = (3x + y ^ 2)
g = Float64[f(x,y) for x in xs, y in ys]
# Interpolate the function
g_int = interpolate(g, BSpline(Quadratic(Line(OnCell()))))
# Scale the interpolated function to the correct grid
gs_int = scale(g_int, xs, ys)
xc = 1:0.1:5
yc = 1:0.1:5
# Compare the real value and the interpolated value of the function at an arbitrary point
println("gs_int(3.2, 3.2) = ", gs_int(3.2, 3.2))
println("f(3.2, 3.2) = ", f(3.2, 3.2))
# Contour of the interpolated plot
p1 = contour(xs, ys, gs_int(xs, ys), fill=true)
# Real contour of the function
p2 = contour(xc, yc, f, fill=true)
plot(p1, p2)
And this obviously didn't give the correct contour, although the interpolation was seemingly correct:
The problem was fixed by transposing gs_int(xs, ys)
:
p1 = contour(xs, ys, gs_int(xs, ys)', fill=true)
Then I randomly generated some points in 2D space, and repeated the same procedures:
using DelimitedFiles
using Interpolations
using Plots
gr()
data = readdlm("./random_points.txt", Float64)
# Create a dictionary to test different orders of interpolations.
inter = Dict("constant" => BSpline(Constant()),
"linear" => BSpline(Linear()),
"quadratic" => BSpline(Quadratic(Line(OnCell()))),
"cubic" => BSpline(Cubic(Line(OnCell())))
)
x = range(-10, length=64, stop=10)
y = range(-10, length=64, stop=10)
v_unscaled = interpolate(data, inter["cubic"])
v = scale(v_unscaled, x, y)
# The contour of the data points
p0 = contour(x, y, data, fill=true)
display(p0)
# The contour of the interpolated function
p_int = contour(x, y, v(x,y)', fill=true)
display(p_int)
However the two contour plots don't look the same.
As I removed the apostrophe after v(x,y)
, this worked:
p_int = contour(x, y, v(x,y), fill=true)
Now I don't get it. When should I apply transposition, and when shouldn't I do so?