2
votes

Using the Go SDK for Apache Beam, I'm trying to create a view of a PCollection using a side input.

But I'm getting this weird error:

Failed to execute job: on ctx=      making side input 0:
singleton side input Singleton for int ill-defined
exit status 1

Here the code I'm using:

// A PCollection of key/value pairs
pairedWithOne := beam.ParDo(s, func(r models.Review) (string, int) {
        return r.DoRecommend, 1
    }, col)

// A PCollection of ints (demo)
pcollInts := beam.CreateList(s, [3]int{
        1, 2, 3,
})

// A PCollection of key/values pairs
summed := stats.SumPerKey(s, pairedWithOne)

// Here is where I'd like to use my side input.
mapped := beam.ParDo(s, func(k string, v int, side int, emit func(ratio 
models.RecommendRatio)) {
        var ratio = models.RecommendRatio{
            DoRecommend: k,
            NumVotes:    v,
        }

        emit(ratio)
    }, summed, beam.SideInput{Input: pcollInts})

I found this example on git:

// Side Inputs
//
// While a ParDo processes elements from a single "main input" PCollection, it
// can take additional "side input" PCollections. These SideInput along with
// the DoFn parameter form express styles of accessing PCollection computed by
// earlier pipeline operations, passed in to the ParDo transform using SideInput
// options, and their contents accessible to each of the DoFn operations. For
// example:
//
//     words := ...
//     cufoff := ...  // Singleton PCollection<int>
//     smallWords := beam.ParDo(s, func (word string, cutoff int, emit func(string)) {
//           if len(word) < cutoff {
//                emit(word)
//           }
//     }, words, beam.SideInput{Input: cutoff})

update: It seems like the Impulse(scope) function has a role here but I cannot figure what. From GoDoc :

Impulse emits a single empty []byte into the global window. The resulting PCollection is a singleton of type []byte.

The purpose of Impulse is to trigger another transform, such as ones that take all information as side inputs.

If this can help, here my structs:

type Review struct {
    Date        time.Time `csv:"date" json:"date"`
    DoRecommend string    `csv:"doRecommend" json:"doRecommend"`
    NumHelpful  int       `csv:"numHelpful" json:"numHelpful"`
    Rating      int       `csv:"rating" json:"rating"`
    Text        string    `csv:"text" json:"text"`
    Title       string    `csv:"title" json:"title"`
    Username    string    `csv:"username" json:"username"`
}

type RecommendRatio struct {
    DoRecommend string `json:"doRecommend"`
    NumVotes    int    `json:"numVotes"`
}

Any solution for this?

thanks

1

1 Answers

0
votes

Update:

This can be simplified by removing the beam.Impulse() function (I think the wrong type caused the trouble here):

mapped := beam.ParDo(s,
        func(k string, v int,
            sideCounted int,
            emit func(ratio models.RecommendRatio)) {

            p := percent.PercentOf(v, sideCounted)

            emit(models.RecommendRatio{
                DoRecommend: k,
                NumVotes:    v,
                Percent:     p,
            })

        }, summed,
        beam.SideInput{Input: counted})

Old: Seems like I've found a solution, maybe just a workaround, looking for a quick review and open to room for improvements. (I believe that function isnt idempotent because if it may executed more than once on multiple node workers, the append() function will duplicate entries...)

But the global idea here is to make a singleton PCollection of a []uint8 byte using beam.Impulse(scope) function and pass all the "real" data as a side inputs.

    // Pair each recommendation value with one -> PColl<KV<string, int>>
    pairedWithOne := beam.ParDo(s, func(r models.Review) (string, int) {
        return r.DoRecommend, 1
    }, col)

    // Sum num occurrences of a recommendation k/v pair
    summed := stats.SumPerKey(s, pairedWithOne)

    // Drop keys for latter global count
    droppedKey := beam.DropKey(s, pairedWithOne)

    // Count globally the number of recommendation values -> PColl<int>
    counted := stats.Sum(s, droppedKey)

    // Map to a struct with percentage per ratio
    mapped := beam.ParDo(s,
        func(_ []uint8,
            sideSummed func(k *string, v *int) bool,
            sideCounted int,
            emit func(ratio []models.RecommendRatio)) {

            var k string
            var v int
            var ratios []models.RecommendRatio


            for sideSummed(&k, &v) {
                p := percent.PercentOf(v, sideCounted)

                ratio := models.RecommendRatio{
                    DoRecommend: k,
                    NumVotes:    v,
                    Percent:     p,
                }

                ratios = append(ratios, ratio)
            }

            emit(ratios)

        }, beam.Impulse(s),
        beam.SideInput{Input: summed},
        beam.SideInput{Input: counted})