0
votes

I wanted to train CNN model for image classification using keras tensorflow GPU backend. I have checked and tensorflow is able to detect GPU. But keras is not using GPU to train model. Task manager also indicate that CPU utilization is 100%, GPU 0% while training model.

I have installed

  1. visual studio community 2017
  2. Python 3.7.3
  3. CUDA 10.0
  4. Cudnn 7.6
  5. Anaconda

I am using windows 10 64bit, GPU 1050 GTX 4gb, CPU intel i5 7th gen.

To install tensorflow GPU I used the following command

conda create --name tf_gpu tensorflow-gpu

I have also tried below 3 methods to force GPU for training

with tensorflow.device('/gpu:0'):
    #code

from keras import backend
assert len(backend.tensorflow_backend._get_available_gpus()) > 0
     #code

from keras import backend as K
K.tensorflow_backend._get_available_gpus()
     #code

The packages I have installed in a virtual environment

# packages in environment at C:\Users\Sreenivasa Reddy\Anaconda3\envs\tf_gpu:
#
# Name                    Version                   Build  Channel
_tflow_select             2.1.0                       gpu
absl-py                   0.7.1                    py37_0
alabaster                 0.7.12                   py37_0
asn1crypto                0.24.0                   py37_0
astor                     0.7.1                    py37_0
astroid                   2.2.5                    py37_0
attrs                     19.1.0                   py37_1
babel                     2.7.0                      py_0
backcall                  0.1.0                    py37_0
blas                      1.0                         mkl
bleach                    3.1.0                    py37_0
ca-certificates           2019.5.15                     0
certifi                   2019.6.16                py37_0
cffi                      1.12.3           py37h7a1dbc1_0
chardet                   3.0.4                    py37_1
cloudpickle               1.2.1                      py_0
colorama                  0.4.1                    py37_0
cryptography              2.7              py37h7a1dbc1_0
cudatoolkit               10.0.130                      0
cudnn                     7.6.0                cuda10.0_0
decorator                 4.4.0                    py37_1
defusedxml                0.6.0                      py_0
docutils                  0.14                     py37_0
entrypoints               0.3                      py37_0
freetype                  2.9.1                ha9979f8_1
gast                      0.2.2                    py37_0
grpcio                    1.16.1           py37h351948d_1
h5py                      2.9.0            py37h5e291fa_0
hdf5                      1.10.4               h7ebc959_0
icc_rt                    2019.0.0             h0cc432a_1
icu                       58.2                 ha66f8fd_1
idna                      2.8                      py37_0
imagesize                 1.1.0                    py37_0
intel-openmp              2019.4                      245
ipykernel                 5.1.1            py37h39e3cac_0
ipython                   7.6.1            py37h39e3cac_0
ipython_genutils          0.2.0                    py37_0
isort                     4.3.21                   py37_0
jedi                      0.13.3                   py37_0
jinja2                    2.10.1                   py37_0
jpeg                      9b                   hb83a4c4_2
jsonschema                3.0.1                    py37_0
jupyter_client            5.3.1                      py_0
jupyter_core              4.5.0                      py_0
Keras                     2.2.4                     <pip>
keras-applications        1.0.8                      py_0
keras-preprocessing       1.1.0                      py_1
keyring                   18.0.0                   py37_0
lazy-object-proxy         1.4.1            py37he774522_0
libpng                    1.6.37               h2a8f88b_0
libprotobuf               3.8.0                h7bd577a_0
libsodium                 1.0.16               h9d3ae62_0
libtiff                   4.0.10               hb898794_2
markdown                  3.1.1                    py37_0
markupsafe                1.1.1            py37he774522_0
mccabe                    0.6.1                    py37_1
mistune                   0.8.4            py37he774522_0
mkl                       2019.4                      245
mkl_fft                   1.0.12           py37h14836fe_0
mkl_random                1.0.2            py37h343c172_0
mock                      3.0.5                    py37_0
nbconvert                 5.5.0                      py_0
nbformat                  4.4.0                    py37_0
numpy                     1.16.4           py37h19fb1c0_0
numpy-base                1.16.4           py37hc3f5095_0
numpydoc                  0.9.1                      py_0
olefile                   0.46                     py37_0
openssl                   1.1.1c               he774522_1
packaging                 19.0                     py37_0
pandoc                    2.2.3.2                       0
pandocfilters             1.4.2                    py37_1
parso                     0.5.0                      py_0
pickleshare               0.7.5                    py37_0
pillow                    6.1.0            py37hdc69c19_0
pip                       19.1.1                   py37_0
prompt_toolkit            2.0.9                    py37_0
protobuf                  3.8.0            py37h33f27b4_0
psutil                    5.6.3            py37he774522_0
pycodestyle               2.5.0                    py37_0
pycparser                 2.19                     py37_0
pyflakes                  2.1.1                    py37_0
pygments                  2.4.2                      py_0
pylint                    2.3.1                    py37_0
pyopenssl                 19.0.0                   py37_0
pyparsing                 2.4.0                      py_0
pyqt                      5.9.2            py37h6538335_2
pyreadline                2.1                      py37_1
pyrsistent                0.14.11          py37he774522_0
pysocks                   1.7.0                    py37_0
python                    3.7.3                h8c8aaf0_1
python-dateutil           2.8.0                    py37_0
pytz                      2019.1                     py_0
pywin32                   223              py37hfa6e2cd_1
PyYAML                    5.1.1                     <pip>
pyzmq                     18.0.0           py37ha925a31_0
qt                        5.9.7            vc14h73c81de_0
qtawesome                 0.5.7                    py37_1
qtconsole                 4.5.1                      py_0
qtpy                      1.8.0                      py_0
requests                  2.22.0                   py37_0
rope                      0.14.0                     py_0
scipy                     1.2.1            py37h29ff71c_0
setuptools                41.0.1                   py37_0
sip                       4.19.8           py37h6538335_0
six                       1.12.0                   py37_0
snowballstemmer           1.9.0                      py_0
sphinx                    2.1.2                      py_0
sphinxcontrib-applehelp   1.0.1                      py_0
sphinxcontrib-devhelp     1.0.1                      py_0
sphinxcontrib-htmlhelp    1.0.2                      py_0
sphinxcontrib-jsmath      1.0.1                      py_0
sphinxcontrib-qthelp      1.0.2                      py_0
sphinxcontrib-serializinghtml 1.1.3                      py_0
spyder                    3.3.6                    py37_0
spyder-kernels            0.5.1                    py37_0
sqlite                    3.29.0               he774522_0
tensorboard               1.13.1           py37h33f27b4_0
tensorflow                1.13.1          gpu_py37h83e5d6a_0
tensorflow-base           1.13.1          gpu_py37h871c8ca_0
tensorflow-estimator      1.13.0                     py_0
tensorflow-gpu            1.13.1               h0d30ee6_0
termcolor                 1.1.0                    py37_1
testpath                  0.4.2                    py37_0
tk                        8.6.8                hfa6e2cd_0
tornado                   6.0.3            py37he774522_0
traitlets                 4.3.2                    py37_0
urllib3                   1.24.2                   py37_0
vc                        14.1                 h0510ff6_4
vs2015_runtime            14.15.26706          h3a45250_4
wcwidth                   0.1.7                    py37_0
webencodings              0.5.1                    py37_1
werkzeug                  0.15.4                     py_0
wheel                     0.33.4                   py37_0
win_inet_pton             1.1.0                    py37_0
wincertstore              0.2                      py37_0
wrapt                     1.11.2           py37he774522_0
xz                        5.2.4                h2fa13f4_4
zeromq                    4.3.1                h33f27b4_3
zlib                      1.2.11               h62dcd97_3
zstd                      1.3.7                h508b16e_0

To check if tensorflow detects GPU

Python 3.7.3 (default, Apr 24 2019, 15:29:51) [MSC v.1915 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
>>> from tensorflow.python.client import device_lib
>>> print(device_lib.list_local_devices())
2019-07-22 17:05:26.706907: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2019-07-22 17:05:26.916585: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties:
name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.493
pciBusID: 0000:01:00.0
totalMemory: 4.00GiB freeMemory: 3.30GiB
2019-07-22 17:05:26.923097: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-07-22 17:05:27.594264: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-07-22 17:05:27.598321: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990]      0
2019-07-22 17:05:27.600418: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0:   N
2019-07-22 17:05:27.602687: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/device:GPU:0 with 3011 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1)
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 17686286348873888351
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 3157432729
locality {
  bus_id: 1
  links {
  }
}
incarnation: 5873520528294819841
physical_device_desc: "device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1"
]

My keras code

import tensorflow as tf
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPool2D
from keras.layers import Flatten
from keras.layers import Dense
from keras import backend as K
K.tensorflow_backend._get_available_gpus()
classifier=Sequential()
    classifier.add(Convolution2D(32,3,3,input_shape=(32,32,3),activation='relu'))
    classifier.add(MaxPool2D(pool_size=(2,2)))
    classifier.add(Convolution2D(32,3,3,activation='relu'))
    classifier.add(MaxPool2D(pool_size=(2,2)))
    classifier.add(Convolution2D(64,3,3,activation='relu'))
    classifier.add(MaxPool2D(pool_size=(2,2)))
    classifier.add(Flatten())
    classifier.add(Dense(output_dim=128, activation='relu'))
    classifier.add(Dense(output_dim=1, activation='sigmoid'))
    classifier.compile(optimizer='adam',loss='binary_crossentropy', metrics=['accuracy'])

    from keras.preprocessing.image import ImageDataGenerator
    train_datagen = ImageDataGenerator(
            rescale=1./255,
            shear_range=0.2,
            zoom_range=0.2,
            horizontal_flip=True)

    test_datagen = ImageDataGenerator(rescale=1./255)

    training_set = train_datagen.flow_from_directory(
            'C:/Users/Sreenivasa Reddy/Desktop/Deep_Learning_A_Z/Volume_1_Supervised_Deep_Learning/Part2_Convolutional_Neural_Networks/Convolutional_Neural_Networks/dataset/training_set',
            target_size=(32, 32),
            batch_size=32,
            class_mode='binary')

    test_set = test_datagen.flow_from_directory(
            'C:/Users/Sreenivasa Reddy/Desktop/Deep_Learning_A_Z/Volume_1_Supervised_Deep_Learning/Part2_Convolutional_Neural_Networks/Convolutional_Neural_Networks/dataset/test_set',
            target_size=(32, 32),
            batch_size=32,
            class_mode='binary')

    classifier.fit_generator(
            training_set,
            steps_per_epoch=8000,
            epochs=25,
            validation_data=test_set,
            validation_steps=2000)

The output in iPython console

import tensorflow as tf
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPool2D
from keras.layers import Flatten
from keras.layers import Dense

from keras import backend as K
K.tensorflow_backend._get_available_gpus()
Out[15]: ['/job:localhost/replica:0/task:0/device:GPU:0']

classifier=Sequential()
classifier.add(Convolution2D(32,3,3,input_shape=(32,32,3),activation='relu'))
classifier.add(MaxPool2D(pool_size=(2,2)))
classifier.add(Convolution2D(32,3,3,activation='relu'))
classifier.add(MaxPool2D(pool_size=(2,2)))
classifier.add(Convolution2D(64,3,3,activation='relu'))
classifier.add(MaxPool2D(pool_size=(2,2)))
classifier.add(Flatten())
classifier.add(Dense(output_dim=128, activation='relu'))
classifier.add(Dense(output_dim=1, activation='sigmoid'))
classifier.compile(optimizer='adam',loss='binary_crossentropy', metrics=['accuracy'])

from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
        rescale=1./255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)

training_set = train_datagen.flow_from_directory(
        'C:/Users/Sreenivasa Reddy/Desktop/Deep_Learning_A_Z/Volume_1_Supervised_Deep_Learning/Part2_Convolutional_Neural_Networks/Convolutional_Neural_Networks/dataset/training_set',
        target_size=(32, 32),
        batch_size=32,
        class_mode='binary')

test_set = test_datagen.flow_from_directory(
        'C:/Users/Sreenivasa Reddy/Desktop/Deep_Learning_A_Z/Volume_1_Supervised_Deep_Learning/Part2_Convolutional_Neural_Networks/Convolutional_Neural_Networks/dataset/test_set',
        target_size=(32, 32),
        batch_size=32,
        class_mode='binary')

classifier.fit_generator(
        training_set,
        steps_per_epoch=8000,
        epochs=25,
        validation_data=test_set,
        validation_steps=2000)
__main__:2: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(32, (3, 3), input_shape=(32, 32, 3..., activation="relu")`
__main__:4: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(32, (3, 3), activation="relu")`
__main__:6: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(64, (3, 3), activation="relu")`
__main__:9: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(activation="relu", units=128)`
__main__:10: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(activation="sigmoid", units=1)`
Found 8000 images belonging to 2 classes.
Found 2000 images belonging to 2 classes.
Epoch 1/25
 782/8000 [=>............................] - ETA: 17:38 - loss: 0.6328 - acc: 0.6310

NOTE: I stopped the kernel after running for sometime to copy code snippet from iPython console

EDIT: I trained RNN and ANN model, when I checked task manager while training, CUDA utilization is around 35%, but for CNN model CUDA utilization is 2%. Isn't the 35% untilization of CUDA low? why doesn't CNN utilize 35%

EDIT2: weirdly when I increase batch size, model trains very slow, when I reduce the batch size(i.e when I make it to 1) model trains lot faster, is there any explanation to this?

1

1 Answers

1
votes

I'm asking my questions here because I haven't earned the privelege to comment yet:/

You mentioned that you tried different approaches:

"with tensorflow.device('/gpu:0'): #code ...

In your code you posted I can't see them or a different approach to use a gpu, but I think you used one to get the output above?

What happens if you use these approaches? Is it still using only the gpu or do you get an error?

Could you maybe try something like this and post the result:

# Creates a graph.

with tf.device('/gpu:0'):

    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')

    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')

    c = tf.matmul(a, b)

# Creates a session with log_device_placement set to True.

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

# Runs the op.

print(sess.run(c))

Like mentioned in this example: https://dzone.com/articles/how-to-train-tensorflow-models-using-gpus

EDIT As for your question of utilization.

this could have multiple reasons for example:

  1. You can try to increase your batche-size, which is rather small. This causes in the many examples the GPU to idle because it is waiting to geht the data from the CPU (which would also explain your 100% CPU usage). Also you have a very small sample size for your training set (only 8000). If you simply want to increase the GPU usage you could set the batch size to 512 or even 1024 and artificailly increase your sample size (e.g. copy your samples multipel times). But be advised that this won't give you a good model, this is simply to increase the GPU usage!!

  2. You have a very small network so that you don't profit from GPU accleration as much. You can try to increase the size of the network to test if the GPU usage increases.

This is also mentioned in Very low GPU usage during training in Tensorflow

I hope this helps.