I am trying to work with a code base for Tiny YOLO v2. I am running into the following error while declaring a learning rate schedule. I can see that my step
values are the same size as my lr
but am unsure what a good fix is. I have included my attempt at explicitly declaring the values (with steps
smaller than lr
) and the error that results in as well.
Error:
Traceback (most recent call last): File "scripts/train_tiny_yolo.py", line 335, in lr = tf.train.piecewise_constant(global_step, steps, lrs) File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/training/learning_rate_decay.py", line 147, in piecewise_constant name=name) File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/training/learning_rate_decay_v2.py", line 166, in piecewise_constant "The length of boundaries should be 1 less than the length of values") ValueError: The length of boundaries should be 1 less than the length of values
Here is the relevant section from my code:
base_lr = params.get('learning_rate', 1e-3)
steps = params.get('steps', [3000, 4000, 5000])
steps_and_lrs = []
if steps[0] > 100:
# Warm-up
steps_and_lrs += [
(25, base_lr / 100),
(50, base_lr / 10)
]
steps_and_lrs += [(step, base_lr * 10**(-i)) for i, step in enumerate(steps)]
steps, lrs = zip(*steps_and_lrs)
# Alternative attempt to explicitly declare lr and steps values
# steps =( 50, 20000, 30000, 40000)
# lrs = (1e-05, 0.0001, 0.001, 0.0001, 1e-05)
max_iter = steps[-1]
lr = tf.train.piecewise_constant(global_step, steps, lrs)
np.set_printoptions(precision=3, suppress=True)
opt = tf.train.MomentumOptimizer(lr, momentum=0.9)
grads_and_vars = opt.compute_gradients(loss)
clip_value = params.get('clip_gradients')
if clip_value is not None:
grads_and_vars = [(tf.clip_by_value(g, -clip_value, clip_value), v) for g, v in grads_and_vars]
train_op = opt.apply_gradients(grads_and_vars,
global_step=global_step)
merged = tf.summary.merge_all()
What have I tried:
When I give the values for steps and lr explicitly, I get the following value error:
Traceback (most recent call last): File "scripts/train_tiny_yolo.py", line 363, in grads_and_vars = [(tf.clip_by_value(g, -clip_value, clip_value), v) for g, v in grads_and_vars] File "scripts/train_tiny_yolo.py", line 363, in grads_and_vars = [(tf.clip_by_value(g, -clip_value, clip_value), v) for g, v in grads_and_vars] File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/util/dispatch.py", line 180, in wrapper return target(*args, **kwargs) File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/ops/clip_ops.py", line 69, in clip_by_value t = ops.convert_to_tensor(t, name="t") File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1039, in convert_to_tensor return convert_to_tensor_v2(value, dtype, preferred_dtype, name) File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1097, in convert_to_tensor_v2 as_ref=False) File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1175, in internal_convert_to_tensor ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py", line 304, in _constant_tensor_conversion_function return constant(v, dtype=dtype, name=name) File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py", line 245, in constant allow_broadcast=True) File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/framework/constant_op.py", line 283, in _constant_impl allow_broadcast=allow_broadcast)) File "/Users/nivedithakalavakonda/Desktop/python_environments/objectdet_tf1/lib/python3.6/site-packages/tensorflow/python/framework/tensor_util.py", line 454, in make_tensor_proto raise ValueError("None values not supported.")
Currently using TensorFlow 1.13.1.
Any help is appreciated. Please let me know if sharing the large code base will be more insightful.