I am trying to match two samples on several covariates using MatchIt, but I am having difficulty creating samples that are similar enough. Both my samples are plenty large (~1000 in the control group, ~5000 in the comparison group).
I want to get a matched sample with participants as closely matched as possible and I am alright with losing sample size in the control group. Right now, MatchIt only returns two groups of 1000, whereas I want two groups that are very closely matched and would be fine with smaller groups (e.g., 500 instead of 1000).
Is there a way to do this through either MatchIt or another package? I would rather avoid using random sampling and then match if possible because I want as close a match between groups as possible.
Apologies for not having a reproducible example, I am still pretty new to using R and couldn't figure out how to make a sample of this issue...
Below is the code I have for matching the two groups.
data<- na.omit(data)
data$Group<- as.numeric(data$Group)
data$Group<- recode(data$Group, '1 = 1; 2 = 0')
m.out <- matchit(Group ~ Age + YearsEdu + Income + Gender, data = data, ratio = 1)
s.out <- summary(m.out, standardize = TRUE)
plot(s.out)
matched.data <- match.data(m.out)