I am a programmer and not a good mathematician so FFT is like some black box to me, I would like t throw some data into some FFT library and get out a plottable AFR (amplitude-frequency response) data, like some software like Rightmark audio does:
http://www.ixbt.com/proaudio/behringer/3031a/fr-hf.png
Now I have a system which plays back a logarithmic swept sine (with short fade-in/fade-out to avoid sharp edges) and records the response from the audio system.
As far as I understand, I need to pad the input with zeros to 2^n, use audio samples as a real part of a complex numbers, set imaginary=0, and I'll get back from FFT the frequency bins array whith half length of input data.
But if I do not need as big frequency resolution as some seconds audio buffer give to me, then what is the right way to make, lets say, 1024 size FFT window, feed chunks of audio and get back 512 frequency points which take into account all the data I passed in? Or maybe it is not possible and I need to feed entire swept sine at once to get back all the AFR data I need?
Also is there any smoothing needed? I have seen that the raw output from FFT may be really noisy. What is the right way to avoid the noise as early as possible, so I see the noise only as it comes from the AFR itself and not from FFT calculations (like the image in the link I have given - it seems pretty smooth)?
I am a C++/C# programmer. I would be grateful for any examples which show how to process chunks of swept sine end get back AFR data. For now I have found only examples which process data in small chunks in realtime, and that is not what I need.
