I am attempting to training a model based on a frozen Inception_v3 model with 3 classes as an output. When I run the training, training accuracy goes up but not validation accuracy which is more or less exactly at 33.33% i.e. showing completely random prediction. I can't figure where is the bug in my code and/or approach
I tried various form of output after the Inception v3 core with no differences at all.
# Model definition
# InceptionV3 frozen, flatten, dense 1024, dropout 50%, dense 1024, dense 3, lr 0.001 --> does not train
# InceptionV3 frozen, flatten, dense 1024, dense 3, lr 0.001 --> does not train
# InceptionV3 frozen, flatten, dense 1024, dense 3, lr 0.005 --> does not train
# InceptionV3 frozen, GlobalAvgPooling, dense 1024, dense 1024, dense 512, dense 3, lr 0.001 --> does not train
# InceptionV3 frozen, GlobalAvgPooling dropout 0.4 dense 3, lr 0.001, custom pre-process --> does not train
# InceptionV3 frozen, GlobalAvgPooling dropout 0.4 dense 3, lr 0.001, custom pre-process, batch=32 --> does not train
# InceptionV3 frozen, GlobalAvgPooling dropout 0.4 dense 3, lr 0.001, custom pre-process, batch=32, rebalance train/val sets --> does not train
IMAGE_SIZE = 150
BATCH_SIZE = 32
def build_model(image_size):
input_tensor = tf.keras.layers.Input(shape=(image_size, image_size, 3))
inception_base = InceptionV3(include_top=False, weights='imagenet', input_tensor=input_tensor)
for layer in inception_base.layers:
layer.trainable = False
x = inception_base.output
x = tf.keras.layers.GlobalAveragePooling2D()(x)
x = tf.keras.layers.Dropout(0.2)(x)
output_tensor = tf.keras.layers.Dense(3, activation="softmax")(x)
model = tf.keras.Model(inputs=input_tensor, outputs=output_tensor)
return model
model = build_model(IMAGE_SIZE)
model.compile(optimizer=RMSprop(lr=0.002), loss='categorical_crossentropy', metrics=['acc'])
# Data generators with Image augmentations
train_datagen = ImageDataGenerator(
rescale=1./255,
preprocessing_function=tf.keras.applications.inception_v3.preprocess_input,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
# Do not augment validation!
validation_datagen = ImageDataGenerator(
rescale=1./255,
preprocessing_function=tf.keras.applications.inception_v3.preprocess_input)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(IMAGE_SIZE, IMAGE_SIZE),
batch_size=BATCH_SIZE,
class_mode='categorical')
validation_generator = validation_datagen.flow_from_directory(
valid_dir,
target_size=(IMAGE_SIZE, IMAGE_SIZE),
batch_size=BATCH_SIZE,
class_mode='categorical')
Output of this cell is:
Found 1697 images belonging to 3 classes. Found 712 images belonging to 3 classes.
Output of last two epochs of training:
Epoch 19/20
23/23 [==============================] - 6s 257ms/step - loss: 1.1930 - acc: 0.3174
54/54 [==============================] - 20s 363ms/step - loss: 0.7870 - acc: 0.6912 - val_loss: 1.1930 - val_acc: 0.3174
Epoch 20/20
23/23 [==============================] - 6s 255ms/step - loss: 1.1985 - acc: 0.3160
54/54 [==============================] - 20s 362ms/step - loss: 0.7819 - acc: 0.7018 - val_loss: 1.1985 - val_acc: 0.3160
history = model.fit_generator(train_generator, epochs=20, verbose=1, validation_data=validation_generator)
– whobbes