I have a data frame with 5 time columns (1st year, second y, etc), and for some rows I have NA's in between non-missing values. Sample below:
df = structure(list(FirstYStage = c(NA, 3.2, 3.1, NA, NA, 2, 1, 3.2,
3.1, 1, 2, 5, 2, NA, NA, NA, NA, 2, 3.1, 1), SecondYStage = c(NA,
3.1, 3.1, NA, NA, 2, 1, 4, 3.1, 1, NA, 5, 3.1, 3.2, 2, 3.1, NA,
2, 3.1, 1), ThirdYStage = c(NA, NA, 3.1, NA, NA, 3.2, 1, 4, NA,
1, NA, NA, 3.2, NA, 2, 3.2, NA, NA, 2, 1), FourthYStage = c(NA,
NA, 3.1, NA, NA, NA, 1, 4, NA, 1, NA, NA, NA, 4, 2, NA, NA, NA,
2, 1), FifthYStage = c(NA, NA, 2, NA, NA, NA, 1, 5, NA, NA, NA,
NA, 3.2, NA, 2, 3.2, NA, NA, 2, 1)), class = c("tbl_df", "tbl",
"data.frame"), row.names = c(NA, -20L))
I would like to count, using dplyr, the number of rows that have missing values in between non-missing values. Rows 13, 14,and 16 are examples of this.
How can I achieve this? I have a feeling this has to do with pasteing the entire row and looking to the left and to the right of the NA... but not clear how to proceed with this.