I've built a simplistic multi-layer NN using Keras with precipitation data in Australia. The code takes 4 input columns: ['MinTemp', 'MaxTemp', 'Rainfall', 'WindGustSpeed']
and trains against the RainTomorrow
output.
I've partitioned the data into training/test buckets, transformed all values into 0 <= n <= 1
. When I trying to run model.fit
, my loss values steady at ~13.2, but my accuracy is always 0.0. An example of logged fitting intervals are:
...
Epoch 37/200
113754/113754 [==============================] - 0s 2us/step - loss: -13.1274 - acc: 0.0000e+00 - val_loss: -16.1168 - val_acc: 0.0000e+00
Epoch 38/200
113754/113754 [==============================] - 0s 2us/step - loss: -13.1457 - acc: 0.0000e+00 - val_loss: -16.1168 - val_acc: 0.0000e+00
Epoch 39/200
113754/113754 [==============================] - 0s 2us/step - loss: -13.1315 - acc: 0.0000e+00 - val_loss: -16.1168 - val_acc: 0.0000e+00
Epoch 40/200
113754/113754 [==============================] - 0s 2us/step - loss: -13.1797 - acc: 0.0000e+00 - val_loss: -16.1168 - val_acc: 0.0000e+00
Epoch 41/200
113754/113754 [==============================] - 0s 2us/step - loss: -13.1844 - acc: 0.0000e+00 - val_loss: -16.1169 - val_acc: 0.0000e+00
Epoch 42/200
113754/113754 [==============================] - 0s 2us/step - loss: -13.2205 - acc: 0.0000e+00 - val_loss: -16.1169 - val_acc: 0.0000e+00
Epoch 43/200
...
How can I amend the following script, so my accuracy grows, and my predication output returns a value between 0 and 1 (0: no rain, 1: rain)?
import keras
import sklearn.model_selection
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
labelencoder = LabelEncoder()
# read data, replace NaN with 0.0
csv_data = pd.read_csv('weatherAUS.csv', header=0)
csv_data = csv_data.replace(np.nan, 0.0, regex=True)
# Input/output columns scaled to 0<=n<=1
x = csv_data.loc[:, ['MinTemp', 'MaxTemp', 'Rainfall', 'WindGustSpeed']]
y = labelencoder.fit_transform(csv_data['RainTomorrow'])
scaler_x = MinMaxScaler(feature_range =(-1, 1))
x = scaler_x.fit_transform(x)
scaler_y = MinMaxScaler(feature_range =(-1, 1))
y = scaler_y.fit_transform([y])[0]
# Partitioned data for training/testing
x_train, x_test, y_train, y_test = sklearn.model_selection.train_test_split(x, y, test_size=0.2)
# model
model = keras.models.Sequential()
model.add( keras.layers.normalization.BatchNormalization(input_shape=tuple([x_train.shape[1]])))
model.add(keras.layers.core.Dense(4, activation='relu'))
model.add(keras.layers.core.Dropout(rate=0.5))
model.add(keras.layers.normalization.BatchNormalization())
model.add(keras.layers.core.Dense(4, activation='relu'))
model.add(keras.layers.core.Dropout(rate=0.5))
model.add(keras.layers.normalization.BatchNormalization())
model.add(keras.layers.core.Dense(4, activation='relu'))
model.add(keras.layers.core.Dropout(rate=0.5))
model.add(keras.layers.core.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=["accuracy"])
callback_early_stopping = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10, verbose=0, mode='auto')
model.fit(x_train, y_train, batch_size=1024, epochs=200, validation_data=(x_test, y_test), verbose=1, callbacks=[callback_early_stopping])
y_test = model.predict(x_test.values)
scaler_y = MinMaxScaler(feature_range =(-1, 1)) y = scaler_y.fit_transform([y])[0]
– Mitiku