I am following the recommendations of using rcorr plain correlation matrix using mtcars dataset using R. I would like to find the correlation for column; mpg to cyl, mpg to disp, mpg to hp and similarly for all other columns (multi sampling) for each of the cars listed as rownames. I understand it would create a large matrix of dataset but in my results for each of the correlation, I would like to know the rowname. My current code looks like this -
require(ggpubr)
require(tidyverse)
require(Hmisc)
require(corrplot)
data(mtcars)
flattenCorrMatrix <- function(cormat, pmat) {
ut <- upper.tri(cormat)
data.frame(
row = rownames(cormat)[row(cormat)[ut]],
column = rownames(cormat)[col(cormat)[ut]],
cor =(cormat)[ut],
p = pmat[ut]
)
}
tt <- mtcars
head(tt)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
dm = data.matrix(tt)
cc = rcorr(dm, type="pearson")
rcc = flattenCorrMatrix(cc$r, cc$P)
rc = data.frame(rcc)
head(rc)
The result is
head(rc)
row column cor p
mpg cyl -0.8522 0.000000000611269
mpg disp -0.8476 0.000000000938033
cyl disp 0.9020 0.000000000001803
mpg hp -0.7762 0.000000178783525
cyl hp 0.8324 0.000000003477861
disp hp 0.7909 0.000000071426787
However I would like to know what car to which a correlation occurred i.e. add a column to the above data frame "car model". In this case, the car model is the rowname from mtcars(above - tt).
Any help to resolve this is appreciated.