I'm trying to analyze the amplitude of each 1/3 octave band frequency, so I'm using many bandpass butterworth filters. However, they only work for 50 Hz when it is a 3rd order. I would like to use a 6th order, but for some reason I got no results below 1 kHz.
[fs, x_raw] = wavfile.read('ruido_rosa.wav')
x_max=np.amax(np.abs(x_raw))
x=x_raw/x_max
L=len(x)
# Creates the vector with all frequencies
f_center=np.array([50.12, 63.10, 79.43, 100, 125.89, 158.49, 199.53, 251.19, 316.23, 398.11, 501.19, 630.96, 794.33, 1000, 1258.9, 1584.9, 1995.3, 2511.9, 3162.3, 3981.1, 5011.9, 6309.6, 7943.3, 10000, 12589.3, 15848.9])
f_low=np.array([44.7, 56.2, 70.8, 89.1, 112, 141, 178, 224, 282, 355, 447, 562, 708, 891, 1120, 1410, 1780, 2240, 2820, 3550, 4470, 5620, 7080, 8910, 11200, 14100])
f_high=np.array([56.2, 70.8, 89.1, 112, 141, 178, 224, 282, 355, 447, 562, 708, 891, 1120, 1410, 1780, 2240, 2820, 3550, 4470, 5620, 7080, 8910, 11200, 14100, 17800])
L2=len(f_center)
x_filtered=np.zeros((L,L2))
for n in range (L2):
order=6
nyq = 0.5*fs
low = f_low[n]/nyq
high = f_high[n]/nyq
b,a = butter(order,[low,high],btype='band')
x_filtered[:,n] = lfilter(b,a,x)
x_filtered_squared=np.power(x_filtered,2)
x_filtered_sum=np.sqrt(np.sum(x_filtered_squared,axis=0)/L)
pyplot.figure(2)
pyplot.semilogx(f_center,20*np.log10(np.abs(x_filtered_sum)))
pyplot.xlim((50,16000))
pyplot.xlabel('FrequĂȘncia (Hz)')
pyplot.ylabel('Amplitude (dB)')
How can I properly filter a 50 Hz bandpass with a 6th order butterworth filter?