I'm trying to build a deep convolutional autoencoder in Keras, but it keeps outputting the wrong shape.
Code:
def build_network(input_shape):
input_input = Input(shape=input_shape)
#Encode
x = Conv2D(16, (3, 3), activation='relu', padding = 'same')(input_input)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
#Decode
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_input, decoded)
return autoencoder
if __name__ == "__main__":
print(build_network((1, 32, 32)).layers[-1].output)
I expect the output shape to be the same as the input shape, but it is instead (8, 32, 1)
for (1, 32, 32)