library(dplyr)
library(caret)
library(doParallel)
cl <- makeCluster(3, outfile = '')
registerDoParallel(cl)
set.seed(2019)
fit1 <- train(x = X_train %>% head(1000) %>% as.matrix(),
y = y_train %>% head(1000),
method = 'ranger',
verbose = TRUE,
trControl = trainControl(method = 'oob',
verboseIter = TRUE,
allowParallel = TRUE,
classProbs = TRUE),
tuneGrid = expand.grid(mtry = 2:3,
min.node.size = 1,
splitrule = 'gini'),
num.tree = 100,
metric = 'Accuracy',
importance = 'permutation')
stopCluster(cl)
The code above results in the error:
Aggregating results Something is wrong; all the Accuracy metric values are missing: Accuracy Kappa
Min. : NA Min. : NA
1st Qu.: NA 1st Qu.: NA
Median : NA Median : NA
Mean :NaN Mean :NaN
3rd Qu.: NA 3rd Qu.: NA
Max. : NA Max. : NA
NA's :2 NA's :2
ERROR: Stopping
I've already searched SO for this error and found out that there are many possible reason behind it. Unfortunetely, I didn't find anything applicable to my case. Here, the issue seems to be with classProbs = TRUE
- when I remove this and default value of FALSE
is used model is trained succesfully. However, I don't get why it may be a problem as according to documentation:
a logical; should class probabilities be computed for classification models (along with predicted values) in each resample?
Data sample:
X_train <- structure(list(V5 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), V1 = c(41.5,
5.3, 44.9, 58.7, 67.9, 56.9, 3.7, 43.4, 38.6, 34.2, 42.3, 29.1,
27.6, 44.2, 55.6, 53.7, 48, 58.4, 54, 7.1, 35.9, 36, 61.2, 24.1,
20.3, 10.8, 13, 69.4, 71.5, 45.6, 34.4, 17.1, 30.1, 68.9, 25.1,
37.4, 55.5, 58.9, 49.8, 47.2, 29.5, 19.9, 24.1, 27, 33.3, 41.9,
33.2, 27.9, 48.4, 41.2), V2 = c(33.1, 35.4, 66.2, 1.8, 5, -0.9,
32.8, 35.8, 36, 4, 65.5, 64, 61, 68.9, 69.3, 59.7, 29.8, 24.4,
62.7, 12.2, 6, -1.2, 63.5, 7.5, 22.9, 40.5, 47.3, 1.6, -1.5,
33.3, 53.3, 23.7, 2.7, 61, 2.4, 13.5, 8.1, 55.1, 29.6, 36.8,
26.8, 26, 30.8, 53.8, 10.6, 1.9, 10.2, 29.1, 51.4, 33.1), V3 = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), V4 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -50L))
y_train <- structure(c(2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L,
1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L), .Label = c("plus", "minus"), class = "factor")