After checking several pieces of codes, I took several shots, found the chessboard corners and use them to get the camera matrix, distortion coefficients, rotation, and translation vectors. Now, can someone tell me which python opencv function do I need to calculate the distance in the real world from the 2D image? project points? For example, using a chessboard as a reference (see picture), if the tile size is 5cm, the distance for 4 tiles should be 20 cm. I saw some functions like projectPoints,findHomography, solvePnP but I am not sure which one do I need to solve my problem and get the transformation matrix between the camera world and the chessboard world. 1 single camera, same position of the camera for all cases but not exactly over the chessboard, and chessboard is placed over a planar object (table)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((nx * ny, 3), np.float32)
objp[:, :2] = np.mgrid[0:nx, 0:ny].T.reshape(-1, 2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d points in real world space
imgpoints = [] # 2d points in image plane.
# Make a list of calibration images
images = glob.glob(path.join(calib_images_dir, 'calibration*.jpg'))
print(images)
# Step through the list and search for chessboard corners
for filename in images:
img = cv2.imread(filename)
imgScale = 0.5
newX,newY = img.shape[1]*imgScale, img.shape[0]*imgScale
res = cv2.resize(img,(int(newX),int(newY)))
gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
# Find the chessboard corners
pattern_found, corners = cv2.findChessboardCorners(gray, (nx,ny), None)
# If found, add object points, image points (after refining them)
if pattern_found is True:
objpoints.append(objp)
# Increase accuracy using subpixel corner refinement
cv2.cornerSubPix(gray,corners,(5,5),(-1,-1),(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1 ))
imgpoints.append(corners)
if verbose:
# Draw and display the corners
draw = cv2.drawChessboardCorners(res, (nx, ny), corners, pattern_found)
cv2.imshow('img',draw)
cv2.waitKey(500)
if verbose:
cv2.destroyAllWindows()
#Now we have our object points and image points, we are ready to go for calibration
# Get the camera matrix, distortion coefficients, rotation and translation vectors
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
print(mtx)
print(dist)
print('rvecs:', type(rvecs),' ',len(rvecs),' ',rvecs)
print('tvecs:', type(tvecs),' ',len(tvecs),' ',tvecs)
mean_error = 0
for i in range(len(objpoints)):
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv2.norm(imgpoints[i],imgpoints2, cv2.NORM_L2)/len(imgpoints2)
mean_error += error
print("total error: ", mean_error/len(objpoints))
imagePoints,jacobian = cv2.projectPoints(objpoints[0], rvecs[0], tvecs[0], mtx, dist)
print('Image points: ',imagePoints)