I am wondering about the simple way to strictly define a column vector in Julia, for example, I want a 3-row column vector B
:
julia> columnVectorB
3×1 Array{Float64,2}:
1.0
2.0
3.0
While I think the normal way is:
julia> columnVectorB = [1.; 2.; 3.]
julia> columnVectorB
3-element Array{Float64,1}:
1.0
2.0
3.0
The reason I must do it is that there are annoying problems if column vectors are defined in the normal way when using matrix manipulation in JuMP. One of the problems is that:
julia> using JuMP
julia> using GLPKMathProgInterface
julia> n = 1
julia> model_mas = Model(solver = GLPKSolverLP())
julia> @variable(model, vec_y[1: n] >= 0, Int)
julia> vec_y
1-element Array{Variable,1}:
vec_y[1]
The n
indicates that vec_y
can be a column vector of n variables. It is the number of column of B
as well, so B
is actually a matrix. When n > 1
, there is no probelm. When n = 1
, B
becomes a column vector. Then, there will be a problem in:
julia> @constraint(model, (columnVectorB * vec_y)[1] <= 10)
ERROR: MethodError: no method matching *(::Array{Float64,1}, ::Array{Variable,1})
Closest candidates are:
*(::Any, ::Any, ::Any, ::Any...) at operators.jl:502
*(::LinearAlgebra.Adjoint{#s45,#s44} where #s44<:SparseArrays.SparseMatrixCSC where #s45<:Union{AbstractJuMPScalar, GenericNormExpr{2,Float64,Variable}, NonlinearExpression, GenericNorm{P,Float64,Variable} where P}
Currently, I solve the problem by:
julia> columnVectorB = rand(3,1)
julia> columnVectorB[1] = 1.
julia> columnVectorB[2] = 2.
julia> columnVectorB[3] = 3.
julia> columnVectorB
3×1 Array{Float64,2}:
1.0
2.0
3.0
julia> columnVectorB * vec_y
3-element Array{JuMP.GenericAffExpr{Float64,Variable},1}:
1 vec_y[1]
2 vec_y[1]
3 vec_y[1]
But this is too stupid. Is there any better way to do this?