I am trying to create a databricks notebook to read a xml file from Azure Data Lake and convert to parquet. I got the spark-xml library from here - [https://github.com/databricks/spark-xml]. I followed the example provided in the github but not able to get it working.
df = (spark.read.format("xml")
.option("rootTag","catalog") \
.option("rowTag", "book") \
.load("adl://mysandbox.azuredatalakestore.net/Source/catalog.xml"))
Exception Details:
java.lang.NoClassDefFoundError: scala/collection/GenTraversableOnce$class
StackTrace:
/databricks/spark/python/pyspark/sql/readwriter.py in load(self, path,
format, schema, **options)
164 self.options(**options)
165 if isinstance(path, basestring):
--> 166 return self._df(self._jreader.load(path))
167 elif path is not None:
168 if type(path) != list:
/databricks/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in
__call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id,
self.name)
1258
Are there any other dependencies I need to define for parsing the xml? Appreciate the help.