7
votes

I want to use Dataflow to move data from Pub/Sub to GCS. So basically I want Dataflow to accumulate some messages in a fixed amount of time (15 minutes for example), then write those data as text file into GCS when that amount of time has passed.

My final goal is to create a custom pipeline, so "Pub/Sub to Cloud Storage" template is not enough for me, and I don't know about Java at all, which made me start to tweak in Python.

Here is what I have got as of now (Apache Beam Python SDK 2.10.0):

import apache_beam as beam

TOPIC_PATH="projects/<my-project>/topics/<my-topic>"

def CombineFn(e):
    return "\n".join(e)

o = beam.options.pipeline_options.PipelineOptions()
p = beam.Pipeline(options=o)
data = ( p | "Read From Pub/Sub" >> beam.io.ReadFromPubSub(topic=TOPIC_PATH)
       | "Window" >> beam.WindowInto(beam.window.FixedWindows(30))
       | "Combine" >> beam.transforms.core.CombineGlobally(CombineFn).without_defaults()
       | "Output" >> beam.io.WriteToText("<GCS path or local path>"))

res = p.run()
res.wait_until_finish()

I ran this program without problems in local environment.

python main.py

It runs locally but read from specified Pub/Sub topic and writes to the specified GCS path every time the 30 seconds has passed, as expected.

The problem now is, however, when I run this on the Google Cloud Platform, namely Cloud Dataflow, it continuously emits mysterious Exception.

java.util.concurrent.ExecutionException: java.lang.RuntimeException: Error received from SDK harness for instruction -1096: Traceback (most recent call last):
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 148, in _execute
    response = task()
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 183, in <lambda>
    self._execute(lambda: worker.do_instruction(work), work)
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 256, in do_instruction
    request.instruction_id)
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 272, in process_bundle
    bundle_processor.process_bundle(instruction_id)
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/bundle_processor.py", line 494, in process_bundle
    op.finish()
  File "apache_beam/runners/worker/operations.py", line 506, in apache_beam.runners.worker.operations.DoOperation.finish
    def finish(self):
  File "apache_beam/runners/worker/operations.py", line 507, in apache_beam.runners.worker.operations.DoOperation.finish
    with self.scoped_finish_state:
  File "apache_beam/runners/worker/operations.py", line 508, in apache_beam.runners.worker.operations.DoOperation.finish
    self.dofn_runner.finish()
  File "apache_beam/runners/common.py", line 703, in apache_beam.runners.common.DoFnRunner.finish
    self._invoke_bundle_method(self.do_fn_invoker.invoke_finish_bundle)
  File "apache_beam/runners/common.py", line 697, in apache_beam.runners.common.DoFnRunner._invoke_bundle_method
    self._reraise_augmented(exn)
  File "apache_beam/runners/common.py", line 722, in apache_beam.runners.common.DoFnRunner._reraise_augmented
    raise_with_traceback(new_exn)
  File "apache_beam/runners/common.py", line 695, in apache_beam.runners.common.DoFnRunner._invoke_bundle_method
    bundle_method()
  File "apache_beam/runners/common.py", line 361, in apache_beam.runners.common.DoFnInvoker.invoke_finish_bundle
    def invoke_finish_bundle(self):
  File "apache_beam/runners/common.py", line 364, in apache_beam.runners.common.DoFnInvoker.invoke_finish_bundle
    self.output_processor.finish_bundle_outputs(
  File "apache_beam/runners/common.py", line 832, in apache_beam.runners.common._OutputProcessor.finish_bundle_outputs
    self.main_receivers.receive(windowed_value)
  File "apache_beam/runners/worker/operations.py", line 87, in apache_beam.runners.worker.operations.ConsumerSet.receive
    self.update_counters_start(windowed_value)
  File "apache_beam/runners/worker/operations.py", line 93, in apache_beam.runners.worker.operations.ConsumerSet.update_counters_start
    self.opcounter.update_from(windowed_value)
  File "apache_beam/runners/worker/opcounters.py", line 195, in apache_beam.runners.worker.opcounters.OperationCounters.update_from
    self.do_sample(windowed_value)
  File "apache_beam/runners/worker/opcounters.py", line 213, in apache_beam.runners.worker.opcounters.OperationCounters.do_sample
    self.coder_impl.get_estimated_size_and_observables(windowed_value))
  File "apache_beam/coders/coder_impl.py", line 953, in apache_beam.coders.coder_impl.WindowedValueCoderImpl.get_estimated_size_and_observables
    def get_estimated_size_and_observables(self, value, nested=False):
  File "apache_beam/coders/coder_impl.py", line 969, in apache_beam.coders.coder_impl.WindowedValueCoderImpl.get_estimated_size_and_observables
    self._windows_coder.estimate_size(value.windows, nested=True))
  File "apache_beam/coders/coder_impl.py", line 758, in apache_beam.coders.coder_impl.SequenceCoderImpl.estimate_size
    self.get_estimated_size_and_observables(value))
  File "apache_beam/coders/coder_impl.py", line 772, in apache_beam.coders.coder_impl.SequenceCoderImpl.get_estimated_size_and_observables
    self._elem_coder.get_estimated_size_and_observables(
  File "apache_beam/coders/coder_impl.py", line 134, in apache_beam.coders.coder_impl.CoderImpl.get_estimated_size_and_observables
    return self.estimate_size(value, nested), []
  File "apache_beam/coders/coder_impl.py", line 458, in apache_beam.coders.coder_impl.IntervalWindowCoderImpl.estimate_size
    typed_value = value
TypeError: Cannot convert GlobalWindow to apache_beam.utils.windowed_value._IntervalWindowBase [while running 'generatedPtransform-1090']

        java.util.concurrent.CompletableFuture.reportGet(CompletableFuture.java:357)
        java.util.concurrent.CompletableFuture.get(CompletableFuture.java:1895)
        org.apache.beam.sdk.util.MoreFutures.get(MoreFutures.java:57)
        org.apache.beam.runners.dataflow.worker.fn.control.RegisterAndProcessBundleOperation.finish(RegisterAndProcessBundleOperation.java:280)
        org.apache.beam.runners.dataflow.worker.util.common.worker.MapTaskExecutor.execute(MapTaskExecutor.java:84)
        org.apache.beam.runners.dataflow.worker.fn.control.BeamFnMapTaskExecutor.execute(BeamFnMapTaskExecutor.java:130)
        org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.process(StreamingDataflowWorker.java:1233)
        org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker.access$1000(StreamingDataflowWorker.java:144)
        org.apache.beam.runners.dataflow.worker.StreamingDataflowWorker$6.run(StreamingDataflowWorker.java:972)
        java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.RuntimeException: Error received from SDK harness for instruction -1096: Traceback (most recent call last):
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 148, in _execute
    response = task()
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 183, in <lambda>
    self._execute(lambda: worker.do_instruction(work), work)
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 256, in do_instruction
    request.instruction_id)
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/sdk_worker.py", line 272, in process_bundle
    bundle_processor.process_bundle(instruction_id)
  File "/usr/local/lib/python2.7/dist-packages/apache_beam/runners/worker/bundle_processor.py", line 494, in process_bundle
    op.finish()
  File "apache_beam/runners/worker/operations.py", line 506, in apache_beam.runners.worker.operations.DoOperation.finish
    def finish(self):
  File "apache_beam/runners/worker/operations.py", line 507, in apache_beam.runners.worker.operations.DoOperation.finish
    with self.scoped_finish_state:
  File "apache_beam/runners/worker/operations.py", line 508, in apache_beam.runners.worker.operations.DoOperation.finish
    self.dofn_runner.finish()
  File "apache_beam/runners/common.py", line 703, in apache_beam.runners.common.DoFnRunner.finish
    self._invoke_bundle_method(self.do_fn_invoker.invoke_finish_bundle)
  File "apache_beam/runners/common.py", line 697, in apache_beam.runners.common.DoFnRunner._invoke_bundle_method
    self._reraise_augmented(exn)
  File "apache_beam/runners/common.py", line 722, in apache_beam.runners.common.DoFnRunner._reraise_augmented
    raise_with_traceback(new_exn)
  File "apache_beam/runners/common.py", line 695, in apache_beam.runners.common.DoFnRunner._invoke_bundle_method
    bundle_method()
  File "apache_beam/runners/common.py", line 361, in apache_beam.runners.common.DoFnInvoker.invoke_finish_bundle
    def invoke_finish_bundle(self):
  File "apache_beam/runners/common.py", line 364, in apache_beam.runners.common.DoFnInvoker.invoke_finish_bundle
    self.output_processor.finish_bundle_outputs(
  File "apache_beam/runners/common.py", line 832, in apache_beam.runners.common._OutputProcessor.finish_bundle_outputs
    self.main_receivers.receive(windowed_value)
  File "apache_beam/runners/worker/operations.py", line 87, in apache_beam.runners.worker.operations.ConsumerSet.receive
    self.update_counters_start(windowed_value)
  File "apache_beam/runners/worker/operations.py", line 93, in apache_beam.runners.worker.operations.ConsumerSet.update_counters_start
    self.opcounter.update_from(windowed_value)
  File "apache_beam/runners/worker/opcounters.py", line 195, in apache_beam.runners.worker.opcounters.OperationCounters.update_from
    self.do_sample(windowed_value)
  File "apache_beam/runners/worker/opcounters.py", line 213, in apache_beam.runners.worker.opcounters.OperationCounters.do_sample
    self.coder_impl.get_estimated_size_and_observables(windowed_value))
  File "apache_beam/coders/coder_impl.py", line 953, in apache_beam.coders.coder_impl.WindowedValueCoderImpl.get_estimated_size_and_observables
    def get_estimated_size_and_observables(self, value, nested=False):
  File "apache_beam/coders/coder_impl.py", line 969, in apache_beam.coders.coder_impl.WindowedValueCoderImpl.get_estimated_size_and_observables
    self._windows_coder.estimate_size(value.windows, nested=True))
  File "apache_beam/coders/coder_impl.py", line 758, in apache_beam.coders.coder_impl.SequenceCoderImpl.estimate_size
    self.get_estimated_size_and_observables(value))
  File "apache_beam/coders/coder_impl.py", line 772, in apache_beam.coders.coder_impl.SequenceCoderImpl.get_estimated_size_and_observables
    self._elem_coder.get_estimated_size_and_observables(
  File "apache_beam/coders/coder_impl.py", line 134, in apache_beam.coders.coder_impl.CoderImpl.get_estimated_size_and_observables
    return self.estimate_size(value, nested), []
  File "apache_beam/coders/coder_impl.py", line 458, in apache_beam.coders.coder_impl.IntervalWindowCoderImpl.estimate_size
    typed_value = value
TypeError: Cannot convert GlobalWindow to apache_beam.utils.windowed_value._IntervalWindowBase [while running 'generatedPtransform-1090']

        org.apache.beam.runners.fnexecution.control.FnApiControlClient$ResponseStreamObserver.onNext(FnApiControlClient.java:157)
        org.apache.beam.runners.fnexecution.control.FnApiControlClient$ResponseStreamObserver.onNext(FnApiControlClient.java:140)
        org.apache.beam.vendor.grpc.v1p13p1.io.grpc.stub.ServerCalls$StreamingServerCallHandler$StreamingServerCallListener.onMessage(ServerCalls.java:248)
        org.apache.beam.vendor.grpc.v1p13p1.io.grpc.ForwardingServerCallListener.onMessage(ForwardingServerCallListener.java:33)
        org.apache.beam.vendor.grpc.v1p13p1.io.grpc.Contexts$ContextualizedServerCallListener.onMessage(Contexts.java:76)
        org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerCallImpl$ServerStreamListenerImpl.messagesAvailable(ServerCallImpl.java:263)
        org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ServerImpl$JumpToApplicationThreadServerStreamListener$1MessagesAvailable.runInContext(ServerImpl.java:683)
        org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.ContextRunnable.run(ContextRunnable.java:37)
        org.apache.beam.vendor.grpc.v1p13p1.io.grpc.internal.SerializingExecutor.run(SerializingExecutor.java:123)
        java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        java.lang.Thread.run(Thread.java:745)

Every time it tries to write to GCS, the exception above is shown without in a non-blocking way. Which leads me to a situation that, when it attempts to output, a new text file is certainly generated but the text content is always the same as the first windowed output. This is obviously unwanted.

The exception is so deeply nested in the stack trace that it is extremely hard to guess what the root cause is, and I have no idea why it ran fine on DirectRunner but not at all on DataflowRunner. It seems it says somewhere in the pipeline, global windowed values are converted to non-global windowed values, although I used non-global window transform at the second stage of the pipeline. Adding custom triggers didn't help.

2
It seems to be from googles side. ShrugjStaff

2 Answers

4
votes

I ran into this same error, and found a workaround, but not a fix:

TypeError: Cannot convert GlobalWindow to apache_beam.utils.windowed_value._IntervalWindowBase [while running 'test-file-out/Write/WriteImpl/WriteBundles']

running locally with DirectRunner and on dataflow with DataflowRunner.

Reverting to apache-beam[gcp]==2.9.0 allows my pipeline to run as expected.

2
votes

I have had so much trouble trying to figure out the

TypeError: Cannot convert GlobalWindow to apache_beam.utils.windowed_value._IntervalWindowBase [while running 'generatedPtransform-1090']

There seems to be something with the WriteToText after beam 2.9.0 (I am using beam 2.14.0, python 3.7)

| "Output" >> beam.io.WriteToText("<GCS path or local path>"))

What made it work for me was removing the pipeline part and radding a custom DoFn:

class WriteToGCS(beam.DoFn):
    def __init__(self):
        self.outdir = "gs://<project>/<folder>/<file>"

    def process(self, element):
        from apache_beam.io.filesystems import FileSystems # needed here
        import json
        writer = FileSystems.create(self.outdir + '.csv', 'text/plain')
        writer.write(element)
        writer.close()


and in the pipeline add:

| 'Save file' >> beam.ParDo(WriteToGCS())