I am a little confused whether the injectivity of the successor function defined on natural numbers in Coq
is an axiom? According to Wikipedia/Peano axioms, it is an axiom (7). When I look at Coq.Init.Peano manual page I see the following:
Definition eq_add_S n m (H: S n = S m): n = m := f_equal pred H.
Hint Immediate eq_add_S: core.
and it looks like an axiom (?) but what confused me was that in the top of that page it said:
It states various lemmas and theorems about natural numbers, including Peano's axioms of arithmetic (in Coq, these are provable)
This sentence is a bit ambiguous no?