I know that the eigenvectors produced by eig(A) have 2-norm 1. But what about the vectors produced in the generalized eigenvalue problem eig(A,B)? A natural conjecture is that such a vector v should satisfy v'Bv=1. When B is the identity matrix, then v'Bv is exactly the square of the 2-norm. I ran the following test for various matrices A and B:
[p,d]=eig(A,B);
v=p(:,1);
v'*B*v
I always choose B to be diagonal. I noticed that v'Bv is not always 1. However, it is indeed 1 when A is symmetric. Does anyone know the rule for the way that Matlab normalizes the generalized eigenvectors? I can't find it in the document.