From https://pytorch.org/
to install pytorch on MacOS the following is stated :
conda install pytorch torchvision -c pytorch
# MacOS Binaries dont support CUDA, install from source if CUDA is needed
Why would want to install pytorch without cuda enabled ?
Reason I ask is I receive error :
--------------------------------------------------------------------------- AssertionError Traceback (most recent call last) in () 78 # predicted = outputs.data.max(1)[1] 79 ---> 80 output = model(torch.tensor([[1,1]]).float().cuda()) 81 predicted = output.data.max(1)[1] 82
~/anaconda3/lib/python3.6/site-packages/torch/cuda/init.py in _lazy_init() 159 raise RuntimeError( 160 "Cannot re-initialize CUDA in forked subprocess. " + msg) --> 161 _check_driver() 162 torch._C._cuda_init() 163 _cudart = _load_cudart()
~/anaconda3/lib/python3.6/site-packages/torch/cuda/init.py in _check_driver() 73 def _check_driver(): 74 if not hasattr(torch._C, '_cuda_isDriverSufficient'): ---> 75 raise AssertionError("Torch not compiled with CUDA enabled") 76 if not torch._C._cuda_isDriverSufficient(): 77 if torch._C._cuda_getDriverVersion() == 0:
AssertionError: Torch not compiled with CUDA enabled
when attempting to execute code :
x = torch.tensor([[0,0] , [0,1] , [1,0]]).float()
print(x)
y = torch.tensor([0,1,1]).long()
print(y)
my_train = data_utils.TensorDataset(x, y)
my_train_loader = data_utils.DataLoader(my_train, batch_size=2, shuffle=True)
# Device configuration
device = 'cpu'
print(device)
# Hyper-parameters
input_size = 2
hidden_size = 100
num_classes = 2
learning_rate = 0.001
train_dataset = my_train
train_loader = my_train_loader
pred = []
for i in range(0 , model_iters) :
# Fully connected neural network with one hidden layer
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
model = NeuralNet(input_size, hidden_size, num_classes).to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# Move tensors to the configured device
images = images.reshape(-1, 2).to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
{:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
output = model(torch.tensor([[1,1]]).float().cuda())
To fix this error I need to install pytorch from source with cuda already installed ?
device = 'cpu'in your pytorch script, but also:output = model(torch.tensor([[1,1]]).float().cuda())- Robert Crovelladeviceinstead to achieve such compatibility. - Rika.to(device)instead of.cuda(). Depending on the value of 'device' the GPU can then be used. Typically this is done like so:device = torch.device('cuda' if torch.cuda.is_available() else 'cpu'). - Bram Vanroy