I am using spark dataframe writer to write the data in internal hive tables in parquet format in IBM Cloud Object Storage. So , my hive metastore is in HDP cluster and I am running the spark job from the HDP cluster. This spark job writes the data to the IBM COS in parquet format. This is how I am starting the spark session
SparkSession session = SparkSession.builder().appName("ParquetReadWrite")
.config("hive.metastore.uris", "<thrift_url>")
.config("spark.sql.sources.bucketing.enabled", true)
.enableHiveSupport()
.master("yarn").getOrCreate();
session.sparkContext().hadoopConfiguration().set("fs.cos.mpcos.iam.api.key",credentials.get(ConnectionConstants.COS_APIKEY));
session.sparkContext().hadoopConfiguration().set("fs.cos.mpcos.iam.service.id",credentials.get(ConnectionConstants.COS_SERVICE_ID));
session.sparkContext().hadoopConfiguration().set("fs.cos.mpcos.endpoint",credentials.get(ConnectionConstants.COS_ENDPOINT));
The issue that I am facing is that when I partition the data and store it (via partitionBy) I am unable to access the data directly from spark sql
spark.sql("select * from partitioned_table").show
To fetch the data from the partitioned table , I have to load the dataframe and register it as a temp table and then query it. The above issue does not occur when the table is not partitioned. The code to write the data is this
dfWithSchema.orderBy(sortKey).write()
.partitionBy("somekey")
.mode("append")
.format("parquet")
.option("path",PARQUET_PATH+tableName )
.saveAsTable(tableName);
Any idea why the the direct query approach is not working for the partitioned tables in COS/Parquet ?