I am trying to solve a regression problem on Boston Dataset with help of random forest regressor.I was using GridSearchCV for selection of best hyperparameters.
Problem 1
Should I fit the GridSearchCV
on some X_train, y_train
and then get the best parameters.
OR
Should I fit it on X, y
to get best parameters.(X, y = entire dataset)
Problem 2
Say If I fit it on X, y
and get the best parameters and then build a new model on these best parameters.
Now how should I train this new model on ?
Should I train the new model on X_train, y_train
or X, y.
Problem 3
If I train new model on X,y
then how will I validate the results ?
My code so far
#Dataframes
feature_cols = ['CRIM','ZN','INDUS','NOX','RM','AGE','DIS','TAX','PTRATIO','B','LSTAT']
X = boston_data[feature_cols]
y = boston_data['PRICE']
Train Test Split of Data
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 1)
Grid Search to get best hyperparameters
from sklearn.grid_search import GridSearchCV
param_grid = {
'n_estimators': [100, 500, 1000, 1500],
'max_depth' : [4,5,6,7,8,9,10]
}
CV_rfc = GridSearchCV(estimator=RFReg, param_grid=param_grid, cv= 10)
CV_rfc.fit(X_train, y_train)
CV_rfc.best_params_
#{'max_depth': 10, 'n_estimators': 100}
Train a Model on the max_depth: 10, n_estimators: 100
RFReg = RandomForestRegressor(max_depth = 10, n_estimators = 100, random_state = 1)
RFReg.fit(X_train, y_train)
y_pred = RFReg.predict(X_test)
y_pred_train = RFReg.predict(X_train)
RMSE: 2.8139766730629394
I just want some guidance with what the correct steps would be