Hi this is a purely theoretical question which i cant get my head around ( and could be completely wrong)
With random forest regressions - you grow n number of trees, each tree uses a subset of the data and in some cases a subset of the available variables to predict the dependent variable. the average of these n number of trees is taken to give us a predicted value. however, is there any need to look at the distribution of predictions at the individual tree level? are we able to obtain a number that provides some certainty of the overall predicted value? i would assume that a more consistent number being produced at the individual tree level would be preferred than a wide variety of numbers?
Thanks in advance