Suppose there is the following mapping with Edge NGram Tokenizer:
{
"settings": {
"analysis": {
"analyzer": {
"autocomplete_analyzer": {
"tokenizer": "autocomplete_tokenizer",
"filter": [
"standard"
]
},
"autocomplete_search": {
"tokenizer": "whitespace"
}
},
"tokenizer": {
"autocomplete_tokenizer": {
"type": "edge_ngram",
"min_gram": 1,
"max_gram": 10,
"token_chars": [
"letter",
"symbol"
]
}
}
}
},
"mappings": {
"tag": {
"properties": {
"id": {
"type": "long"
},
"name": {
"type": "text",
"analyzer": "autocomplete_analyzer",
"search_analyzer": "autocomplete_search"
}
}
}
}
}
And the following documents are indexed:
POST /tag/tag/_bulk
{"index":{}}
{"name" : "HITS FIND SOME"}
{"index":{}}
{"name" : "TRENDING HI"}
{"index":{}}
{"name" : "HITS OTHER"}
Then searching
{
"query": {
"match": {
"name": {
"query": "HI"
}
}
}
}
yields all with the same score, or TRENDING - HI
with a score higher than one of the others.
How can it be configured, to show with a higher score the entries that actually start with the searcher n-gram? In this case, HITS FIND SOME
and HITS OTHER
to have a higher score than TRENDING HI
; at the same time TRENDING HI
should be in the results.
Highlighter is also used, so the given solution shouldn't mess it up.
The highlighter used in query is:
"highlight": {
"pre_tags": [
"<"
],
"post_tags": [
">"
],
"fields": {
"name": {}
}
}
Using this with match_phrase_prefix
messes up the highlighting, yielding <H><I><T><S> FIND SOME
when searching only for H
.