I'm trying to solve exercises from Steven Strogatz's Non-Linear Dynamics and Chaos. In exercise 2.8.3, 2.8.4, and 2.8.5, one is expected to implement the Euler method, improved Euler method, and Runge-Kutta (4th order) method respectively for the initial value problem dx/dt = -x; x(0) = 1 to find x(1).
Analytically, the answer is 1/e. And I was finding the error obtained in each method. Much to my surprise, I was getting lesser error in Euler than in Improved Euler and Runge-Kutta!
My code looks like this. Sorry for the shabbiness.
from scipy.integrate import odeint
import numpy as np
import matplotlib.pyplot as plt
to = 0
xo = 1
tf = 1
deltaT = np.zeros([5])
errorE = np.zeros([5])
errorIE = np.zeros([5])
errorRK = np.zeros([5])
for j in range(0,5):
n = pow(10,j)
deltat = (tf - to)/(n)
print ("delta t is",deltat)
deltaT[j] = deltat
t = np.linspace(to,tf,n)
xE = np.zeros([n])
xIE = np.zeros([n])
xRK = np.zeros([n])
xE[0] = xo
xIE[0] = xo
xRK[0] = xo
for i in range (1,n):
#Regular Euler
xE[i] = deltat*(-xE[i-1]) + xE[i-1]
#Improved Euler
IEintermediate = deltat*(-xIE[i-1]) + xIE[i-1]
xIE[i] = xIE[i-1] - deltat*(xIE[i-1] + IEintermediate)/2
#Runge-Kutta fourth order
k1 = -deltat*xRK[i-1]
k2 = -deltat*(xRK[i-1] + k1/2)
k3 = -deltat*(xRK[i-1] + k2/2)
k4 = -deltat*(xRK[i-1] + k3)
xRK[i] = xRK[i-1] + (k1 + 2*k2 + 2*k3 + k4)/6
print (deltat,xE[i],xIE[i],xRK[i])
errorE[j] = np.exp(-1) - xE[n-1]
errorIE[j] = np.exp(-1) - xIE[n-1]
errorRK[j] = np.exp(-1) - xRK[n-1]
The errors :
For delT = 1.0
- Euler error is -0.6321205588285577
- I.Euler error is -0.6321205588285577
- RK error is -0.6321205588285577
For delT = 0.1
- Euler error -0.019541047828557645
- I.Euler error -0.039348166379443716
- RK error -0.03869055002863331
For delT = 0.01
- Euler -0.0018501964782845493
- I.Euler -0.003703427083890265
- RK -0.0036972498815148747
For delT = 0.001
- Euler -0.0001840470877806366
- I.Euler -0.00036812480143849635
- RK-0.00036806344222467535
For delT = 0.0001
- Euler -1.839504510836587e-05
- I.Euler -3.67903967520844e-05
- RK -3.678978357835039e-05
Is this legit? If not, why is this happening?