We can write a fairly simple function to check if two arrays have the same elements, modulo ordering:
function eq_modulo_ordering!(xs, ys) # note !, mutates xs and ys
while !isempty(xs)
i = findfirst(isequal(pop!(xs)), ys)
i === nothing && return false
deleteat!(ys, i)
end
isempty(ys)
end
eq_modulo_ordering(xs, ys) = eq_modulo_ordering!(copy(xs), copy(ys))
We can use then use this function to check if two top-level expressions are equivalent.
function expr_equiv(a::Expr, b::Expr, comm)
a.head === b.head || return false
a.head === :call || return a == b
a.args[1] ∈ comm || return a == b
eq_modulo_ordering(a.args, b.args)
end
expr_equiv(a, b, comm) = a == b
expr_equiv(a, b) = expr_equiv(a, b, [:+])
In the case that we want to check that two expressions are fully equivalent beyond the top-level, we could modify our functions to use mutual recursion to check if the subexpressions are expr_equiv
, rather than isequal
.
function eq_modulo_ordering!(xs, ys, comm) # note !, mutates xs and ys
while !isempty(xs)
x = pop!(xs)
i = findfirst(b -> expr_equiv(x, b, comm), ys)
i === nothing && return false
deleteat!(ys, i)
end
isempty(ys)
end
eq_modulo_ordering(xs, ys, comm) = eq_modulo_ordering!(copy(xs), copy(ys), comm)
function expr_equiv(a::Expr, b::Expr, comm)
a.head === b.head || return false
a.head === :call || return a == b
a.args[1] ∈ comm || return all(expr_equiv.(a.args, b.args, Ref(comm)))
eq_modulo_ordering(a.args, b.args, comm)
end
expr_equiv(a, b, comm) = a == b
expr_equiv(a, b) = expr_equiv(a, b, [:+])
We can now use expr_equiv
as expected, optionally supplying a list of functions which are commutative.
julia> expr_equiv(:((a + b + b) * c), :((b + a + b) * c))
true
julia> expr_equiv(:((a + a + b) * c), :((b + a + b) * c))
false
julia> expr_equiv(:(c * (a + b + b)), :((b + a + b) * c), [:+, :*])
true