Below is a paramter for DecisionTreeClassifier: max_depth
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
max_depth : int or None, optional (default=None)
The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples.
I always thought that depth of the decision tree should be equal or less than number of the features (attributes) of a given dataset. IWhat if we find pure classes before the mentioned input for that parameter? Does it stop splitting or splits further till the mentioned input?
Is it possible to use the same attribute in two different level of a decision tree while splitting?
log(n)
). If you reach a leaf (with only 1 observation) you will stop building from this point onward. – user2974951