"Does anyone know the reasons why Julia chose a design of functions where the parameters given as inputs cannot be modified?" asked by Schemer
Your question is wrong because you assume the wrong things.
- Parameters are variables
When you pass things to a function, often those things are values and not variables.
for example:
function double(x::Int64)
2 * x
end
Now what happens when you call it using
double(4)
What is the point of the function modifying it's parameter x , it's pointless. Furthermore the function has no idea how it is called.
Furthermore, Julia is built for speed.
A function that modifies its parameter will be hard to optimise because it causes side effects. A side effect is when a procedure/function changes objects/things outside of it's scope.
If a function does not modifies a variable that is part of its calling parameter then you can be safe knowing.
- the variable will not have its value changed
- the result of the function can be optimised to a constant
- not calling the function will not break the program's behaviour
Those above three factors are what makes FUNCTIONAL language fast and NON FUNCTIONAL language slow.
Furthermore when you move into Parallel programming or Multi Threaded programming, you absolutely DO NOT WANT a variable having it's value changed without you (The programmer) knowing about it.
"How would you implement with your proposed macro, the function F(x) which returns a boolean value and modifies c by c:= c + 1. F can be used in the following piece of Ada code : c:= 0; While F(c) Loop ... End Loop;" asked by Schemer
I would write
function F(x)
boolean_result = perform_some_logic()
return (boolean_result,x+1)
end
flag = true
c = 0
(flag,c) = F(c)
while flag
do_stuff()
(flag,c) = F(c)
end
"Unfortunately no, because, and I should have said that, c has to take again the value 0 when F return the value False (c increases as long the Loop lives and return to 0 when it dies). " said Schemer
Then I would write
function F(x)
boolean_result = perform_some_logic()
if boolean_result == true
return (true,x+1)
else
return (false,0)
end
end
flag = true
c = 0
(flag,c) = F(c)
while flag
do_stuff()
(flag,c) = F(c)
end