2
votes

I trained an ssd_mobilenet_v1 model to detect small objects in a static greyscale Image.

enter image description here

Now I want to determine things like the horizontal angle of the object. How do I "extract" the object as an Image or an Image-Array for further geometric investigation?

This is my altered version of the object_detection_tutorial.ipynb file from Tensorflow Object Detection API on Github (Original can be found here: https://github.com/tensorflow/models/tree/master/research/object_detection)

Code:

Imports

mport numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile

from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
from object_detection.utils import ops as utils_ops

Object detection imports

from utils import label_map_util

from utils import visualization_utils as vis_util

Variables

# What model to download.
MODEL_NAME = 'shard_graph_ssd'

# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'label_map.pbtxt')

NUM_CLASSES = 1

Load a (frozen) Tensorflow model into memory.

detection_graph = tf.Graph()
with detection_graph.as_default():
  od_graph_def = tf.GraphDef()
  with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
    serialized_graph = fid.read()
    od_graph_def.ParseFromString(serialized_graph)
    tf.import_graph_def(od_graph_def, name='')

Loading label map

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

Helper code

def load_image_into_numpy_array(image):
  # The function supports only grayscale images
    last_axis = -1
    dim_to_repeat = 2
    repeats = 3
    grscale_img_3dims = np.expand_dims(image, last_axis)
    training_image = np.repeat(grscale_img_3dims, repeats, dim_to_repeat).astype('uint8')
    assert len(training_image.shape) == 3
    assert training_image.shape[-1] == 3
    return training_image

Detection

PATH_TO_TEST_IMAGES_DIR = '/home/usr/test_images'
L = []
for n in os.listdir(PATH_TO_TEST_IMAGES_DIR):
    if n.endswith('png'):
        L.append(n)
L.sort()
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, i) for i in L ]

# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)

def run_inference_for_single_image(image, graph):
  with graph.as_default():
    with tf.Session() as sess:
      # Get handles to input and output tensors
      ops = tf.get_default_graph().get_operations()
      all_tensor_names = {output.name for op in ops for output in op.outputs}
      tensor_dict = {}
      for key in [
          'num_detections', 'detection_boxes', 'detection_scores',
          'detection_classes', 'detection_masks'
      ]:
        tensor_name = key + ':0'
        if tensor_name in all_tensor_names:
          tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
              tensor_name)
      if 'detection_masks' in tensor_dict:
        # The following processing is only for single image
        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
        # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
        real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
            detection_masks, detection_boxes, image.shape[0], image.shape[1])
        detection_masks_reframed = tf.cast(
            tf.greater(detection_masks_reframed, 0.5), tf.uint8)
        # Follow the convention by adding back the batch dimension
        tensor_dict['detection_masks'] = tf.expand_dims(
            detection_masks_reframed, 0)
      image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

      # Run inference
      output_dict = sess.run(tensor_dict,
                             feed_dict={image_tensor: np.expand_dims(image, 0)})

      # all outputs are float32 numpy arrays, so convert types as appropriate
      output_dict['num_detections'] = int(output_dict['num_detections'][0])
      output_dict['detection_classes'] = output_dict[
          'detection_classes'][0].astype(np.uint8)
      output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
      output_dict['detection_scores'] = output_dict['detection_scores'][0]
      if 'detection_masks' in output_dict:
        output_dict['detection_masks'] = output_dict['detection_masks'][0]
  return output_dict

i = 0
for image_path in TEST_IMAGE_PATHS:
  image = Image.open(image_path)
  # the array based representation of the image will be used later in order to prepare the
  # result image with boxes and labels on it.
  image_np = load_image_into_numpy_array(image)
  # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
  image_np_expanded = np.expand_dims(image_np, axis=0)
  # Actual detection.
  output_dict = run_inference_for_single_image(image_np, detection_graph)
  # Visualization of the results of a detection.
  vis_util.visualize_boxes_and_labels_on_image_array(
      image_np,
      output_dict['detection_boxes'],
      output_dict['detection_classes'],
      output_dict['detection_scores'],
      category_index,
      instance_masks=output_dict.get('detection_masks'),
      use_normalized_coordinates=True,
      line_thickness=2,
      skip_labels=True,
      max_boxes_to_draw=1,
      min_score_thresh=0.5)
  plt.figure(figsize=IMAGE_SIZE)
  i += 1
  plt.imsave('/home/usr/Images_after_inference/' + str(i), image_np, cmap = 'gray')
1
Have you found how to do it? I'm currently stuck with the same problem @ArturThamindu DJ
Yes, I have posted my solution to this. RegardsArtur Müller Romanov

1 Answers

3
votes

I solved this problem with following function:

i is a variable used for looping, basically the number of current image

def crop_objects(image, image_np, output_dict, i):
    global ymin, ymax, xmin, xmax
    width, height = image.size

    #Coordinates of detected objects
    ymin = int(output_dict['detection_boxes'][0][0]*height)
    xmin = int(output_dict['detection_boxes'][0][1]*width)
    ymax = int(output_dict['detection_boxes'][0][2]*height)
    xmax = int(output_dict['detection_boxes'][0][3]*width)
    crop_img = image_np[ymin:ymax, xmin:xmax]

    # 1. Only crop objects that are detected with an accuracy above 50%, 
    # images 
    # with objects below 50% will be filled with zeros (black image)
    # This is something I need in my program
    # 2. Only crop the object with the highest score (Object Zero)
    if output_dict['detection_scores'][0] < 0.5:
        crop_img.fill(0)

    #Save cropped object into image
    cv2.imwrite('Images/Step_2/' + str(i) + '.png', crop_img)
    return ymin, ymax, xmin, xmax

These are required for it to work:

image = Image.open(image_path)
image_np = load_image_into_numpy_array(image)

def load_image_into_numpy_array(image):
    #Für Bilderkennung benötigte Funktion
    last_axis = -1
    dim_to_repeat = 2
    repeats = 3
    grscale_img_3dims = np.expand_dims(image, last_axis)
    training_image = np.repeat(grscale_img_3dims, repeats, dim_to_repeat).astype('uint8')
    assert len(training_image.shape) == 3
    assert training_image.shape[-1] == 3
    return training_image

This might be more code than required for just cropping the objects.