So what I need to do is to apply an operation like
(x(i,j)-min(x)) / max(x(i,j)-min(x))
which basically converts each pixel value such that the values range between 0 and 1.
First of all, I realised that Matlab saves our image(rows * col * colour) in a 3D matrix on using imread,
Image = imread('image.jpg')
So, a simple max operation on image doesn't give me the max value of pixel and I'm not quite sure what it returns(another multidimensional array?). So I tried using something like
max_pixel = max(max(max(Image)))
I thought it worked fine. Similarly I used min thrice. My logic was that I was getting the min pixel value across all 3 colour planes.
After performing the above scaling operation I got an image which seemed to have only 0 or 1 values and no value in between which doesn't seem right. Has it got something to do with integer/float rounding off?
image = imread('cat.jpg')
maxI = max(max(max(image)))
minI = min(min(min(image)))
new_image = ((I-minI)./max(I-minI))
This gives output of only 1s and 0s which doesn't seem correct.
The other approach I'm trying is working on all colour planes separately as done here. But is that the correct way to do it?
I could also loop through all pixels but I'm assuming that will be time taking. Very new to this, any help will be great.
dim
argument tomax
/min
, as described in the docs. Also I think the bottom of the fraction in your first equation should be (max(x)-min(x)), taking the max of (x-min(x)) will not normalise the data between 0 and 1. - Wolfie0-255
. alsosize(image)
gives375 500 3
, which means it's RGB I think. When I usered = image(:,:,1)
and thensize(red)
I get375 500
. - momo