0
votes

Event sourcing means a 180 degree shift in the way many of us have been architecting and developing web applications, with lots of advantages but also many challenges.

Apache Kafka is an awesome platform that through its Apache Kafka Streams API is advertised as a tool that allows us to implement this paradimg through its many features (decoupling, fault tolerance, scalability...): https://www.confluent.io/blog/event-sourcing-cqrs-stream-processing-apache-kafka-whats-connection/

On the other hand there are some articles discouraging us from using it for event sourcing: https://medium.com/serialized-io/apache-kafka-is-not-for-event-sourcing-81735c3cf5c

These are my questions regarding Kafka Streams suitability as an event sourcing plaftorm:

  1. The article above comes from Jesper Hammarbäck (who works for serialized.io, an event sourcing platform). I would like to get an answer to the main problems he brings up:

    • Loading current state. In my view with log compaction and state stores it's not a problem. Am I right?

    • Consistent writes.

  2. When moving certain pieces of functionality into Kafka Streams I'm not sure if they do fit naturally:

    • Authentication & Security: Imagine your customers are stored in a state store generated from a customer-topic. Should we keep their passwords in the topic/store? It doesn't sound safe enough, does it? Then how are we supposed to manage this aspect of having customers on a state store and their passwords somewhere else? Any recommended good practice?

    • Queries: Interactive queries are a nice tool to generate queriable views of our data (by key). That's ok to get an entity by id but what about complex queries (joins)? Do we need to generate state stores per query? For instance one store for customers by id, another one for customers by state, another store for customers who purchased a product last year... It doesn't sound manageable. Another point is the lack of pagination: how can we handle big sets of data when querying the state stores? One more point, we can’t do dynamic queries (like JPA criteria API) anymore. This leads to CQRS maybe? Complexity keeps growing this way...

    • Data growth: with databases we are used to have thousands and thousands of rows per table. Kafka Streams applications keep a local state store that will grow and grow over time. How scalable is that? How is that local storage kept (local disk/RAM)? If it's disk we should provision applications with enough space, if it's RAM enough memory.

1
Seems this question is actually quite open ended, and I am not sure if it's suitable for SO. I'll try to give my point of view -- not sure if it can be considered an answer.Matthias J. Sax
I appreciate your taking the time to answer this mixture of conceptual and technical doubts. The answer did help me address a number of things that have come up since I'm working with this technology. Cheers!codependent

1 Answers

4
votes
  1. Loading Current State: The mechanism described in the blog, about re-reacting current state ad-hoc for a single entity would indeed be costly with Kafka. However Kafka Streams follow the philosophy to keep the current state for all object in a KTable (that is distributed/sharded). Thus, it's never required to do this -- of course, it come with certain memory costs.

  2. Kafka Streams parallelized based on different events. Thus, all interactions for a single event (processing, state updates) are performed by a single thread. Thus, I don't see why there should be inconsistent writes.

  3. I am not sure what the exact requirement would be. In the current implementation, Kafka Streams does not offer any store specific authentication or security features. There are several things one could do for security though: (a) encrypt the local disk: this might be the simplest thing to do to protect data. (2) encrypt messages within the business logic, before you put them into the store.

  4. Interactive Queries offers limited support for many reasons (don't want to go into details) and it was never design with the goal to support complex queries. The idea is about eager computation of result what can be retrieved with simple lookups. As you pointed out, this is not very scalable (cost intensive) if you have a lot of different queries. To tackle this, it would make sense to load the data into a database, and let the DB does what it is build for. Kafka Streams alone is not the right tool for this atm -- however, there is no reason to not combine both.

  5. Per default Kafka Streams uses RocksDB to keep local state (you can switch to in-memory stores, too). Thus, it's possible to write to disk and to use very large state. Of course, you need to provision your instances accordingly (cf: https://docs.confluent.io/current/streams/sizing.html). Besides this, Kafka Streams scales horizontally and is fully elastic. Thus, you can add new instances at any point in time allowing you to hold terra-bytes of state if you have large disks and enough instances. Note, that the number of input topic partitions limit the number of instances you can use (internally, Kafka Streams is a consumer group, and you cannot have more instances than partitions). If this is a concern, it's recommended to over-partition the input topics in the first place.