I am using spark 2.2.1 and hive2.1. I am trying to insert overwrite multiple partitions into existing partitioned hive/parquet table.
Table was created using sparkSession.
I have a table 'mytable' with partitions P1 and P2.
I have following set on sparkSession object:
"hive.exec.dynamic.partition"=true
"hive.exec.dynamic.partition.mode"="nonstrict"
Code:
val df = spark.read.csv(pathToNewData)
df.createOrReplaceTempView("updateTable") //here 'df' may contains data from multiple partitions. i.e. multiple values for P1 and P2 in data.
spark.sql("insert overwrite table mytable PARTITION(P1, P2) select c1, c2,..cn, P1, P2 from updateTable") // I made sure that partition columns P1 and P2 are at the end of projection list.
I am getting following error:
org.apache.spark.sql.AnalysisException: org.apache.hadoop.hive.ql.metadata.Table.ValidationFailureSemanticException: Partition spec {p1=, p2=, P1=1085, P2=164590861} contains non-partition columns;
dataframe 'df' have records for P1=1085, P2=164590861 . It looks like issue with casing (lower vs upper). I tried both cases in my query but it's still not working.
EDIT:
Insert statement works with static partitioning but that is not what I am looking for: e.g. following works
spark.sql("insert overwrite table mytable PARTITION(P1=1085, P2=164590861) select c1, c2,..cn, P1, P2 from updateTable where P1=1085 and P2=164590861")
Create table stmt:
`CREATE TABLE `my_table`(
`c1` int,
`c2` int,
`c3` string,
`p1` int,
`p2` int)
PARTITIONED BY (
`p1` int,
`p2` int)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'maprfs:/mds/hive/warehouse/my.db/xc_bonus'
TBLPROPERTIES (
'spark.sql.partitionProvider'='catalog',
'spark.sql.sources.schema.numPartCols'='2',
'spark.sql.sources.schema.numParts'='1',
'spark.sql.sources.schema.part.0'='{.spark struct metadata here.......}';
'spark.sql.sources.schema.partCol.0'='P1', //Spark is using Capital Names for Partitions; while hive is using lowercase
'spark.sql.sources.schema.partCol.1'='P2',
'transient_lastDdlTime'='1533665272')`
In above, spark.sql.sources.schema.partCol.0 uses all uppercase while PARTITIONED BY statement uses all lowercase for partitions columns