0
votes

working with TF (Tensor Flow) Object Detection API.

I'm training a custom dataset with TF v1.9 and TF Models recent version, 2018/07/20.

OS: Windows 10. TF: v1.9 Only CPU. Installed via pip.

I've followed a mix of various tutorials:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_pets.md https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/preparing_inputs.md https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_locally.md

And one very useful to get started:

https://github.com/EdjeElectronics/TensorFlow-Object-Detection-API-Tutorial-Train-Multiple-Objects-Windows-10

However TF Models repo has changed some files, leaving some to the legacy folder. That last tutorial is only useful with a specific old commit.

I've tried to adapt to the current version calling model_main.py with proper parameters, and setting every parameter, directory, file, etc, in pipeline_config .

My data set has 594 images for training, and 150 for evaluating. One class. Using model ssdlite_mobilenet_v2_coco.

Labels were set with LabelImg tool, then created the CSV, and then converted to tfrecord data with the generate_tf_record script.

After a while the only output I've have are several lines like this:

WARNING:tensorflow:Ignoring ground truth with image id 534047036 since it was previously added
WARNING:tensorflow:Ignoring detection with image id 534047036 since it was previously added

and some times,

creating index...
index created!
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.69s).
Accumulating evaluation results...
DONE (t=0.11s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.003
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.026
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.015
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.071
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.030
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.083
WARNING:tensorflow:num_readers has been reduced to 1 to match input file shards.

Tensorboard informs: No dashboards are active for the current data set. No checkpoint files are generated. It runs for hours/days with that output I've checked two, three, several times the configuration.

Is this a normal behavior / output? Why there is no output files, checkpoints, etc?

ssdlite_mobilenet_v2_coco.config :

model {
  ssd {
    num_classes: 1
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    feature_extractor {
      type: "ssd_mobilenet_v2"
      depth_multiplier: 1.0
      min_depth: 16
      conv_hyperparams {
        regularizer {
          l2_regularizer {
            weight: 3.99999989895e-05
          }
        }
        initializer {
          truncated_normal_initializer {
            mean: 0.0
            stddev: 0.0299999993294
          }
        }
        activation: RELU_6
        batch_norm {
          decay: 0.999700009823
          center: true
          scale: true
          epsilon: 0.0010000000475
          train: true
        }
      }
      use_depthwise: true
    }
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    box_predictor {
      convolutional_box_predictor {
        conv_hyperparams {
          regularizer {
            l2_regularizer {
              weight: 3.99999989895e-05
            }
          }
          initializer {
            truncated_normal_initializer {
              mean: 0.0
              stddev: 0.0299999993294
            }
          }
          activation: RELU_6
          batch_norm {
            decay: 0.999700009823
            center: true
            scale: true
            epsilon: 0.0010000000475
            train: true
          }
        }
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.800000011921
        kernel_size: 3
        box_code_size: 4
        apply_sigmoid_to_scores: false
        use_depthwise: true
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.20000000298
        max_scale: 0.949999988079
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.333299994469
      }
    }
    post_processing {
      batch_non_max_suppression {
        score_threshold: 0.300000011921
        iou_threshold: 0.600000023842
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
    normalize_loss_by_num_matches: true
    loss {
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      classification_loss {
        weighted_sigmoid {
        }
      }
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.990000009537
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 3
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
  }
}
train_config {
  batch_size: 24
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
  optimizer {
    rms_prop_optimizer {
      learning_rate {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.00400000018999
          decay_steps: 800720
          decay_factor: 0.949999988079
        }
      }
      momentum_optimizer_value: 0.899999976158
      decay: 0.899999976158
      epsilon: 1.0
    }
  }
  fine_tune_checkpoint: "C:/proyectos/ml/tensorflow/models/tf_model_files/ssdlite_mobilenet_v2_coco_2018_05_09/model.ckpt"
  num_steps: 200000
  fine_tune_checkpoint_type: "detection"
}
train_input_reader {
  label_map_path: "C:/proyectos/ml/tensorflow/models/models-master/research/object_detection/training/labelmap.pbtxt"
  tf_record_input_reader {
    input_path: "C:/proyectos/ml/samples/lics/training/training.record"
  }
}
eval_config {
  num_examples: 594
  max_evals: 10
  use_moving_averages: false
}
eval_input_reader {
  label_map_path: "C:/proyectos/ml/tensorflow/models/models-master/research/object_detection/training/labelmap.pbtxt"
  shuffle: false
  num_readers: 1
  tf_record_input_reader {
    input_path: "C:/proyectos/ml/samples/lics/testing/testing.record"
  }
}

generate_tf_record.py

  """
Usage:
  # From tensorflow/models/
  # Create train data:
  python generate_tfrecord.py --csv_input=images/train_labels.csv --image_dir=images/train --output_path=train.record

  # Create test data:
  python generate_tfrecord.py --csv_input=images/test_labels.csv  --image_dir=images/test --output_path=test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('image_dir', '', 'Path to the image directory')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS


# TO-DO replace this with label map
def class_text_to_int(row_label):
    if row_label == 'pat':
        return 1
    else:
        None


def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    print("!output_path Path="+FLAGS.output_path)
    path = os.path.join(os.getcwd(), FLAGS.image_dir)
    print("!image_dir="+path)
    print("!csv_input="+FLAGS.csv_input)
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print('Successfully created the TFRecords: {}'.format(output_path))


if __name__ == '__main__':
    tf.app.run()

xml_to_csv

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET


def xml_to_csv(path):
    xml_list = []
    for xml_file in glob.glob(path + '/*.xml'):
        Nombre = os.path.split(xml_file)[1]
        NombreJpg = Nombre.split(".")[0] + "jpg"
        if not os.path.exists(path+"/"+Nombre):
            print("No esta la imagen " + path+"/"+NombreJpg)
            continue
        print("Adding "+Nombre)
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall('object'):
            value = (root.find('filename').text,
                     int(root.find('size')[0].text),
                     int(root.find('size')[1].text),
                     member[0].text,
                     int(member[4][0].text),
                     int(member[4][1].text),
                     int(member[4][2].text),
                     int(member[4][3].text)
                     )
            xml_list.append(value)
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
    xml_df = pd.DataFrame(xml_list, columns=column_name)
    return xml_df


def main():
    image_path = "C:/proyectos/ml/samples/lics/training"
    xml_df = xml_to_csv(image_path)
    xml_df.to_csv("C:/proyectos/ml/samples/lics/training/training.csv", index=None)
    print('Successfully converted training xml to csv.')

    image_path = "C:/proyectos/ml/samples/lics/testing"
    xml_df = xml_to_csv(image_path)
    xml_df.to_csv("C:/proyectos/ml/samples/lics/testing/testing.csv", index=None)
    print('Successfully converted testing xml to csv.')



main()

Example xml:

    <annotation>
    <folder>training</folder>
    <filename>20180525_320_135_000142_6.jpg</filename>
    <path>C:\proyectos\ml\samples\lics\training\20180525_320_135_000142_6.jpg</path>
    <source>
        <database>Unknown</database>
    </source>
    <size>
        <width>1280</width>
        <height>1024</height>
        <depth>3</depth>
    </size>
    <segmented>0</segmented>
    <object>
        <name>pat</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>949</xmin>
            <ymin>290</ymin>
            <xmax>1093</xmax>
            <ymax>336</ymax>
        </bndbox>
    </object>
</annotation>
1

1 Answers

0
votes

Solved, the problem was that script model_main.py expects input flag model_dir, and I was using modeldir. Input parser didn't warn explicitly about it.