Why does this error occur.
I am trying to write a custom loss function, that finally has a negative log likelihood.
As per my understanding the NLL is calculated between two probability values?
>>> loss = F.nll_loss(sigm, trg_, ignore_index=250, weight=None, size_average=True)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home//lib/python3.5/site-packages/torch/nn/functional.py", line 1332, in nll_loss
return torch._C._nn.nll_loss(input, target, weight, size_average, ignore_index, reduce)
RuntimeError: Expected object of type torch.LongTensor but found type torch.FloatTensor for argument #2 'target'
The inputs here being the following:
>>> sigm.size()
torch.Size([151414, 80])
>>> sigm
tensor([[ 0.3283, 0.6472, 0.8278, ..., 0.6756, 0.2168, 0.5659],
[ 0.6603, 0.5957, 0.8375, ..., 0.2274, 0.4523, 0.4665],
[ 0.5262, 0.4223, 0.5009, ..., 0.5734, 0.3151, 0.2076],
...,
[ 0.4083, 0.2479, 0.5996, ..., 0.8355, 0.6681, 0.7900],
[ 0.6373, 0.3771, 0.6568, ..., 0.4356, 0.8143, 0.4704],
[ 0.5888, 0.4365, 0.8587, ..., 0.2233, 0.8264, 0.5411]])
And my target tensor is:
>>> trg_.size()
torch.Size([151414])
>>> trg_
tensor([-7.4693e-01, 3.5152e+00, 2.9679e-02, ..., 1.6316e-01,
3.6594e+00, 1.3366e-01])
If I convert this to long I loose all data:
>>> sigm.long()
tensor([[ 0, 0, 0, ..., 0, 0, 0],
[ 0, 0, 0, ..., 0, 0, 0],
[ 0, 0, 0, ..., 0, 0, 0],
...,
[ 0, 0, 0, ..., 0, 0, 0],
[ 0, 0, 0, ..., 0, 0, 0],
[ 0, 0, 0, ..., 0, 0, 0]])
>>> trg_.long()
tensor([ 0, 3, 0, ..., 0, 3, 0])
If I convert the raw values of target tensor to sigmoid
too:
>>> F.sigmoid(trg_)
tensor([ 0.3215, 0.9711, 0.5074, ..., 0.5407, 0.9749, 0.5334])
>>> loss = F.nll_loss(sigm, F.sigmoid(trg_), ignore_index=250, weight=None, size_average=True)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/lib/python3.5/site-packages/torch/nn/functional.py", line 1332, in nll_loss
return torch._C._nn.nll_loss(input, target, weight, size_average, ignore_index, reduce)
RuntimeError: Expected object of type torch.LongTensor but found type torch.FloatTensor for argument #2 'target'
This does calculate the loss happily, but it is again just make belief as I have lost data in the long conversion:
>>> loss = F.nll_loss(sigm, F.sigmoid(trg_).long(), ignore_index=250, weight=None, size_average=True)
>>> loss
tensor(-0.5010)
>>> F.sigmoid(trg_).long()
tensor([ 0, 0, 0, ..., 0, 0, 0])