I'm fitting the following data where t: time (s), G: counts, f: impulse function:
t G f
-7200 4.7 0
-6300 5.17 0
-5400 4.93 0
-4500 4.38 0
-3600 4.47 0
-2700 4.4 0
-1800 3.36 0
-900 3.68 0
0 4.58 0
900 11.73 11
1800 18.23 8.25
2700 19.33 3
3600 19.04 0.5
4500 17.21 0
5400 12.98 0
6300 11.59 0
7200 9.26 0
8100 7.66 0
9000 6.59 0
9900 5.68 0
10800 5.1 0
Using the following convolution integral:
And more specifically:
Where: lambda_1 = 0.000431062
and lambda_2 = 0.000580525
.
The code used to perform that fitting is:
#Extract data into numpy arrays
t=df['t'].as_matrix()
g=df['G'].as_matrix()
f=df['f'].as_matrix()
#Definition of the function
def convol(x,A,B,C):
dx=x[1]-x[0]
return A*np.convolve(f, np.exp(-lambda_1*x))[:len(x)]*dx+B*np.convolve(f, np.exp(-lambda_2*x))[:len(x)]*dx+C
#Determination of fit parameters A,B,C
popt, pcov = curve_fit(convol, t, g)
A,B,C= popt
perr = np.sqrt(np.diag(pcov))
#Plot fit
fit = convol(t,A,B,C)
plt.plot(t, fit)
plt.scatter(t, g,s=50, color='black')
plt.show()
The problem is that my fit parameters, A, and B are too low and have no physical meaning. I think my problem is related to the step width dx
. It should tend to 0 in order to approximate my sum (np.convolve()
corresponds a discrete sum of the convolution product) into an integral.