I'm trying to writing code of a Producer and Consumer using Kafka and Spark Streaming and Python; the scenario is the following: there is a producer of randomic messages concerned to odometry in Json format that publishes messages every 3 seconds on a topic using threading:
from kafka import KafkaProducer
from kafka.errors import KafkaError import threading
from random import randint import random
import json
import math
def sendMessage():
#the function is called every 3 seconds, then a message is sent every 3 seconds
threading.Timer(3.0, sendMessage).start()
#connection with message broker
producer = KafkaProducer(bootstrap_servers=['localhost:9092'], value_serializer=lambda m: json.dumps(m).encode('ascii'))
#the id is initially fixed to 1, but there could be more robots
robotId = 1
#generation of random int
deltaSpace = randint(1, 9) #.encode()
thetaTwist = random.uniform(0, math.pi*2) #.encode()
future = producer.send('odometry', key=b'message', value={'robotId': robotId, 'deltaSpace': deltaSpace, 'thetaTwist': thetaTwist}).add_callback(on_send_success).add_errback(on_send_error)
# Block for 'synchronous' sends
try:
record_metadata = future.get(timeout=10)
except KafkaError:
# Decide what to do if produce request failed...
log.exception()
pass
producer.flush()
def on_send_success(record_metadata):
print ("topic name: " + record_metadata.topic)
print ("number of partitions: " + str(record_metadata.partition))
print ("offset: " + str(record_metadata.offset))
def on_send_error(excp):
log.error('I am an errback', exc_info=excp)
# handle exception
sendMessage()
Then there is a Consumer that consumes messages every 3 seconds on the same topic and process them with Spark Streaming; here is the code:
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
import json
# Create a local StreamingContext with two working thread and batch interval of 3 second
sc = SparkContext("local[2]", "OdometryConsumer")
ssc = StreamingContext(sc, 3)
kafkaStream = KafkaUtils.createDirectStream(ssc, ['odometry'], {'metadata.broker.list': 'localhost:9092'})
parsed = kafkaStream.map(lambda v: json.loads(v))
def f(x):
print(x)
fore = parsed.foreachRDD(f)
ssc.start() # Start the computation
ssc.awaitTermination() # Wait for the computation to terminate
To run the application, I start zookeeper server on port 2181
sudo /opt/kafka/bin/zookeeper-server-start.sh /opt/kafka/config/zookeeper.properties
then I start the server/broker of Kafka on port 9092
sudo /opt/kafka/bin/kafka-server-start.sh /opt/kafka/config/server.properties
and then I start the Producer and the Consumer
python3 Producer.py
./spark-submit --jars spark-streaming-kafka-0-8-assembly_2.11-2.3.1.jar /home/erca/Scrivania/proveTesi/SparkConsumer.py
The application runs without errors, but I'm not sure that the messages are really consumed; what can I do to verify that? Thank everyone who helps me!
f
, writex.take(10)
instead. – mayank agrawal