I frequently want to create summary tables for studies where I compare several variables between two groups, listing values for each variable along with the difference between that variable for the two groups.
For example, say I want to compare age groups (young and old) and proportion of males between two groups, A and B. I’d like to end up with a table with rows for each variable (age, proportion of males) and columns for the following variables repeated for each group (numerator, denominators, rate, difference between the two rates, 95%CI, p-value from a chi-square).
I’m looking for a general approach to this type of table.
Let’s say I have the following table:
library(dplyr)
AgeGroup <- sample(c("Young", "Old"), 10, replace = TRUE)
Gender <- sample(c("Male", "Female"), 10, replace = TRUE)
df <- data.frame(AgeGroup, Gender)
df
I can create a summary table without the comparison easily:
df1 <- df %>%
group_by(AgeGroup) %>%
summarise(num_M = sum(Gender == "Male"),
den_M = n(),
prop_M = num_M/den_M)
df1
But I can’t figure out how to create additional columns of comparisons between the different rows of grouped data. Let’s say I want to do a chi.sq test on the proportion of Males in each AgeGroup and add the p-value to the summary table above.
It would look like this (numbers, obviously, are examples), Y = Young, O = Old:
Any gentle nudges in the right direction would be greatly appreciated.
Thanks!