I am trying to detect the lines within an image using the Hough Transformation. Therefore I first create the accumulator like this:
from math import hypot, pi, cos, sin
from PIL import Image
import numpy as np
import cv2 as cv
import math
def hough(img):
thetaAxisSize = 460 #Width of the hough space image
rAxisSize = 360 #Height of the hough space image
rAxisSize= int(rAxisSize/2)*2 #we make sure that this number is even
img = im.load()
w, h = im.size
houghed_img = Image.new("L", (thetaAxisSize, rAxisSize), 0) #legt Bildgroesse fest
pixel_houghed_img = houghed_img.load()
max_radius = hypot(w, h)
d_theta = pi / thetaAxisSize
d_rho = max_radius / (rAxisSize/2)
#Accumulator
for x in range(0, w):
for y in range(0, h):
treshold = 255
col = img[x, y]
if col >= treshold: #determines for each pixel at (x,y) if there is enough evidence of a straight line at that pixel.
for vx in range(0, thetaAxisSize):
theta = d_theta * vx #angle between the x axis and the line connecting the origin with that closest point.
rho = x*cos(theta) + y*sin(theta) #distance from the origin to the closest point on the straight line
vy = rAxisSize/2 + int(rho/d_rho+0.5) #Berechne Y-Werte im hough space image
pixel_houghed_img[vx, vy] += 1 #voting
return houghed_imgcode here
And then call the function like this:
im = Image.open("img3.pgm").convert("L")
houghed_img = hough(im)
houghed_img.save("ho.bmp")
houghed_img.show()
The result seems to be okay:
So here comes the problem. I know want to find the top 3 highest values in the hough space and transform it back to 3 lines. The highest values should be the strongest lines.
Therefore I am first looking for the highest values within the pixel array and take the X and Y values of the maxima I found. From my understading this X and Y values are my rho and theta. I finding the maxima like this:
def find_maxima(houghed_img):
w, h = houghed_img.size
max_radius = hypot(w, h)
pixel_houghed_img = houghed_img.load()
max1, max2, max3 = 0, 0, 0
x1position, x2position, x3position = 0, 0, 0
y1position, y2position, y3position = 0, 0, 0
rho1, rho2, rho3 = 0, 0, 0
theta1, theta2, theta3 = 0, 0, 0
for x in range(1, w):
for y in range(1, h):
value = pixel_houghed_img[x, y]
if(value > max1):
max1 = value
x1position = x
y1position = y
rho1 = x
theta1 = y
elif(value > max2):
max2 = value
x2position = x
x3position = y
rho2 = x
theta2 = y
elif(value > max3):
max3 = value
x3position = x
y3position = y
rho3 = x
theta3 = y
print('max', max1, max2, max3)
print('rho', rho1, rho2, rho3)
print('theta', theta1, theta2, theta3)
# Results of the print:
# ('max', 255, 255, 255)
# ('rho', 1, 1, 1)
# ('theta', 183, 184, 186)
return rho1, theta1, rho2, theta2, rho3, theta3
And now I want to use this rho and theta values to draw the detected lines. I am doing this with the following code:
img_copy = np.ones(im.size)
rho1, theta1, rho2, theta2, rho3, theta3 = find_maxima(houghed_img)
a1 = math.cos(theta1)
b1 = math.sin(theta1)
x01 = a1 * rho1
y01 = b1 * rho1
pt11 = (int(x01 + 1000*(-b1)), int(y01 + 1000*(a1)))
pt21 = (int(x01 - 1000*(-b1)), int(y01 - 1000*(a1)))
cv.line(img_copy, pt11, pt21, (0,0,255), 3, cv.LINE_AA)
a2 = math.cos(theta2)
b2 = math.sin(theta2)
x02 = a2 * rho2
y02 = b2 * rho2
pt12 = (int(x02 + 1000*(-b2)), int(y02 + 1000*(a2)))
pt22 = (int(x02 - 1000*(-b2)), int(y02 - 1000*(a2)))
cv.line(img_copy, pt12, pt22, (0,0,255), 3, cv.LINE_AA)
a3 = math.cos(theta3)
b3 = math.sin(theta3)
x03 = a3 * rho3
y03 = b3 * rho3
pt13 = (int(x03 + 1000*(-b3)), int(y03 + 1000*(a3)))
pt23 = (int(x03 - 1000*(-b3)), int(y03 - 1000*(a3)))
cv.line(img_copy, pt13, pt23, (0,0,255), 3, cv.LINE_AA)
cv.imshow('lines', img_copy)
cv.waitKey(0)
cv.destroyAllWindows()
However, the result seems to be wrong:
So my assuption is that I either do something wrong when I declare the rho and theta values in the find_maxima() function, meaning that something is wrong with this:
max1 = value
x1position = x
y1position = y
rho1 = x
theta1 = y
OR that I am doing something wrong when translating the rho and theta value back to a line.
I would be very thankful if someone can help me with that!
Edit1: As request please finde the original Image where I want to finde the lines from below:
Edit2: Thanks to the input of @Alessandro Jacopson and @Cris Luegno I was able to make some changes that definitely give me some hope!
In my def hough(img): I was setting the threshold to 255, which means that I only voted for white pixels, which is wrong since I want to look at the black pixels, since these pixels will indicate lines and not the white background of my image. So the calculation of the accumlator in def hough(img): looks like this now:
#Accumulator
for x in range(0, w):
for y in range(0, h):
treshold = 0
col = img[x, y]
if col <= treshold: #determines for each pixel at (x,y) if there is enough evidence of a straight line at that pixel.
for vx in range(0, thetaAxisSize):
theta = d_theta * vx #angle between the x axis and the line connecting the origin with that closest point.
rho = x*cos(theta) + y*sin(theta) #distance from the origin to the closest point on the straight line
vy = rAxisSize/2 + int(rho/d_rho+0.5) #Berechne Y-Werte im hough space image
pixel_houghed_img[vx, vy] += 1 #voting
return houghed_img
This leads to the following Accumulator and the following rho and thea values, when using the find_maxima() function:
# Results of the prints: (now top 8 instead of top 3)
# ('max', 155, 144, 142, 119, 119, 104, 103, 98)
# ('rho', 120, 264, 157, 121, 119, 198, 197, 197)
# ('theta', 416, 31, 458, 414, 417, 288, 291, 292)
The Lines that I can draw from this values look like this:
So this results are much more better but something seems to be still wrong. I have a strong suspicion that still something is wrong here:
for x in range(1, w):
for y in range(1, h):
value = pixel_houghed_img[x, y]
if(value > max1):
max1 = value
x1position = x
y1position = y
rho1 = value
theta1 = x
Here I am setting rho and theta equals [0...w] respectively [0...h]. I think that this is wrong since in the hough space values of X and why Y are not 0, 1,2,3... since we are in a another space. So I assume, that I have to multiply X and Y with something to bring them back in hough space. But this is just an assumption, maybe you guys can think of something else?
Again thank you very much to Alessandro and Cris for helping me out here!
Edit3: Working Code, thanks to @Cris Luengo
from math import hypot, pi, cos, sin
from PIL import Image
import numpy as np
import cv2 as cv
import math
def hough(img):
img = im.load()
w, h = im.size
thetaAxisSize = w #Width of the hough space image
rAxisSize = h #Height of the hough space image
rAxisSize= int(rAxisSize/2)*2 #we make sure that this number is even
houghed_img = Image.new("L", (thetaAxisSize, rAxisSize), 0) #legt Bildgroesse fest
pixel_houghed_img = houghed_img.load()
max_radius = hypot(w, h)
d_theta = pi / thetaAxisSize
d_rho = max_radius / (rAxisSize/2)
#Accumulator
for x in range(0, w):
for y in range(0, h):
treshold = 0
col = img[x, y]
if col <= treshold: #determines for each pixel at (x,y) if there is enough evidence of a straight line at that pixel.
for vx in range(0, thetaAxisSize):
theta = d_theta * vx #angle between the x axis and the line connecting the origin with that closest point.
rho = x*cos(theta) + y*sin(theta) #distance from the origin to the closest point on the straight line
vy = rAxisSize/2 + int(rho/d_rho+0.5) #Berechne Y-Werte im hough space image
pixel_houghed_img[vx, vy] += 1 #voting
return houghed_img, rAxisSize, d_rho, d_theta
def find_maxima(houghed_img, rAxisSize, d_rho, d_theta):
w, h = houghed_img.size
pixel_houghed_img = houghed_img.load()
maxNumbers = 9
ignoreRadius = 10
maxima = [0] * maxNumbers
rhos = [0] * maxNumbers
thetas = [0] * maxNumbers
for u in range(0, maxNumbers):
print('u:', u)
value = 0
xposition = 0
yposition = 0
#find maxima in the image
for x in range(0, w):
for y in range(0, h):
if(pixel_houghed_img[x,y] > value):
value = pixel_houghed_img[x, y]
xposition = x
yposition = y
#Save Maxima, rhos and thetas
maxima[u] = value
rhos[u] = (yposition - rAxisSize/2) * d_rho
thetas[u] = xposition * d_theta
pixel_houghed_img[xposition, yposition] = 0
#Delete the values around the found maxima
radius = ignoreRadius
for vx2 in range (-radius, radius): #checks the values around the center
for vy2 in range (-radius, radius): #checks the values around the center
x2 = xposition + vx2 #sets the spectated position on the shifted value
y2 = yposition + vy2
if not(x2 < 0 or x2 >= w):
if not(y2 < 0 or y2 >= h):
pixel_houghed_img[x2, y2] = 0
print(pixel_houghed_img[x2, y2])
print('max', maxima)
print('rho', rhos)
print('theta', thetas)
return maxima, rhos, thetas
im = Image.open("img5.pgm").convert("L")
houghed_img, rAxisSize, d_rho, d_theta = hough(im)
houghed_img.save("houghspace.bmp")
houghed_img.show()
img_copy = np.ones(im.size)
maxima, rhos, thetas = find_maxima(houghed_img, rAxisSize, d_rho, d_theta)
for t in range(0, len(maxima)):
a = math.cos(thetas[t])
b = math.sin(thetas[t])
x = a * rhos[t]
y = b * rhos[t]
pt1 = (int(x + 1000*(-b)), int(y + 1000*(a)))
pt2 = (int(x - 1000*(-b)), int(y - 1000*(a)))
cv.line(img_copy, pt1, pt2, (0,0,255), 3, cv.LINE_AA)
cv.imshow('lines', img_copy)
cv.waitKey(0)
cv.destroyAllWindows()
Original Image:
Accumulator:
Successful Line Detection: