1
votes

EDIT: I have simplified the application and make it all the code reproducible. EDIT 2: I just discovered that when I use the navBarPage I must click on Additional Parameters -> Colour. Then is coloured as expected.

I'm developing a shiny app which filters my genes and then plots a heatmap of the remaining genes. Recently, I have found shinyHeatmaply package. I have download their global, UI and Server, and when I try it on my own computer they work as expected. Unfortunately, when I try to combine my filter app and their heatmap using navbarPage, the last one is not rending properly.

I have created a minimalist example adding the shinyheatmap to the second tabPanel of navbarPage in the https://shiny.rstudio.com/gallery/shiny-theme-selector.html app, but I get the same grey render anyway.

Same mistake in a simpler application

The UI: Navbar 1 belongs to the shinytheme application, whilst the content of Navbar 2 belongs to the shinyheatmaply

tagList(
  shinythemes::themeSelector(),
  navbarPage(
    # theme = "cerulean",  # <--- To use a theme, uncomment this
    "shinythemes",
    tabPanel("Navbar 1",
             sidebarPanel(
               fileInput("file", "File input:"),
               textInput("txt", "Text input:", "general"),
               sliderInput("slider", "Slider input:", 1, 100, 30),
               tags$h5("Deafult actionButton:"),
               actionButton("action", "Search"),

               tags$h5("actionButton with CSS class:"),
               actionButton("action2", "Action button", class = "btn-primary")
             ),
             mainPanel(
               tabsetPanel(
                 tabPanel("Tab 1",
                          h4("Table"),
                          tableOutput("table"),
                          h4("Verbatim text output"),
                          verbatimTextOutput("txtout"),
                          h1("Header 1"),
                          h2("Header 2"),
                          h3("Header 3"),
                          h4("Header 4"),
                          h5("Header 5")
                 ),
                 tabPanel("Tab 2", "This panel is intentionally left blank"),
                 tabPanel("Tab 3", "This panel is intentionally left blank")
               )
             )
    ),
    tabPanel("Navbar 2", 
               fluidPage(
                 sidebarLayout(
                   sidebarPanel(width=4,
                                h4('Data Selection'),
                                fileInput(inputId="mydata", label = "Import Data",multiple = T),
                                uiOutput('data'),
                                checkboxInput('showSample','Subset Data'),
                                conditionalPanel('input.showSample',uiOutput('sample')),
                                hr(),h4('Data Preprocessing'),
                                column(width=4,selectizeInput('transpose','Transpose',choices = c('No'=FALSE,'Yes'=TRUE),selected = FALSE)),
                                column(width=4,selectizeInput("transform_fun", "Transform", c(Identity=".",Sqrt='sqrt',log='log',Scale='scale',Normalize='normalize',Percentize='percentize',"Missing values"='is.na10', Correlation='cor'),selected = '.')),
                                uiOutput('annoVars'),

                                br(),hr(),h4('Row dendrogram'),
                                column(width=6,selectizeInput("distFun_row", "Distance method", c(Euclidean="euclidean",Maximum='maximum',Manhattan='manhattan',Canberra='canberra',Binary='binary',Minkowski='minkowski'),selected = 'euclidean')),
                                column(width=6,selectizeInput("hclustFun_row", "Clustering linkage", c(Complete= "complete",Single= "single",Average= "average",Mcquitty= "mcquitty",Median= "median",Centroid= "centroid",Ward.D= "ward.D",Ward.D2= "ward.D2"),selected = 'complete')),
                                column(width=12,sliderInput("r", "Number of Clusters", min = 1, max = 15, value = 2)),    
                                #column(width=4,numericInput("r", "Number of Clusters", min = 1, max = 20, value = 2, step = 1)),   

                                br(),hr(),h4('Column dendrogram'),
                                column(width=6,selectizeInput("distFun_col", "Distance method", c(Euclidean="euclidean",Maximum='maximum',Manhattan='manhattan',Canberra='canberra',Binary='binary',Minkowski='minkowski'),selected = 'euclidean')),
                                column(width=6,selectizeInput("hclustFun_col", "Clustering linkage", c(Complete= "complete",Single= "single",Average= "average",Mcquitty= "mcquitty",Median= "median",Centroid= "centroid",Ward.D= "ward.D",Ward.D2= "ward.D2"),selected = 'complete')),
                                column(width=12,sliderInput("c", "Number of Clusters", min = 1, max = 15, value = 2)),
                                #column(width=4,numericInput("c", "Number of Clusters", min = 1, max = 20, value = 2, step = 1)),    

                                br(),hr(),  h4('Additional Parameters'),

                                column(3,checkboxInput('showColor','Color')),
                                column(3,checkboxInput('showMargin','Layout')),
                                column(3,checkboxInput('showDendo','Dendrogram')),
                                hr(),
                                conditionalPanel('input.showColor==1',
                                                 hr(),
                                                 h4('Color Manipulation'),
                                                 uiOutput('colUI'),
                                                 sliderInput("ncol", "Set Number of Colors", min = 1, max = 256, value = 256),
                                                 checkboxInput('colRngAuto','Auto Color Range',value = T),
                                                 conditionalPanel('!input.colRngAuto',uiOutput('colRng'))
                                ),

                                conditionalPanel('input.showDendo==1',
                                                 hr(),
                                                 h4('Dendrogram Manipulation'),
                                                 selectInput('dendrogram','Dendrogram Type',choices = c("both", "row", "column", "none"),selected = 'both'),
                                                 selectizeInput("seriation", "Seriation", c(OLO="OLO",GW="GW",Mean="mean",None="none"),selected = 'OLO'),
                                                 sliderInput('branches_lwd','Dendrogram Branch Width',value = 0.6,min=0,max=5,step = 0.1)
                                ),             

                                conditionalPanel('input.showMargin==1',
                                                 hr(),
                                                 h4('Widget Layout'),
                                                 column(4,textInput('main','Title','')),
                                                 column(4,textInput('xlab','X Title','')),
                                                 column(4,textInput('ylab','Y Title','')),
                                                 sliderInput('row_text_angle','Row Text Angle',value = 0,min=0,max=180),
                                                 sliderInput('column_text_angle','Column Text Angle',value = 45,min=0,max=180),
                                                 sliderInput("l", "Set Margin Width", min = 0, max = 200, value = 130),
                                                 sliderInput("b", "Set Margin Height", min = 0, max = 200, value = 40)
                                )
                   ),

                   mainPanel(
                     tabsetPanel(
                       tabPanel("Heatmaply",
                                tags$a(id = 'downloadData', class = paste("btn btn-default shiny-download-link",'mybutton'), href = "", target = "_blank", download = NA, icon("clone"), 'Download Heatmap as HTML'),
                                tags$head(tags$style(".mybutton{color:white;background-color:blue;} .skin-black .sidebar .mybutton{color: green;}") ),
                                plotlyOutput("heatout",height='600px')
                       ),
                       tabPanel("Data",
                                DT::dataTableOutput('tables')
                       )
                     )
                   )
                 )
               )



             ),
    tabPanel("Navbar 3", "This panel is intentionally left blank")
  )
)

The server: Regarding to the server, first two output correspond to the shinytheme and the others belong to shinyheatmaply

d=data(package='datasets')$results[,'Item']
d=d[!grepl('[\\()]',d)]
d=d[!d%in%c('UScitiesD','eurodist','sleep','warpbreaks')]
d=d[unlist(lapply(d,function(d.in) eval(parse(text=paste0('ncol(as.data.frame(datasets::',d.in,'))')))))>1]
d=d[-which(d=='mtcars')]
d=c('mtcars',d)

server <- shinyServer(function(input, output,session) {


  ####This to output belongs to the shinytheme application####
  output$txtout <- renderText({
    paste(input$txt, input$slider, format(input$date), sep = ", ")
  })
  output$table <- renderTable({
    head(cars, 4)
  })
  #######################################################
  #Up to here the code belongs to shinyheatmaply
  output$txtout <- renderText({
    paste(input$txt, input$slider, format(input$date), sep = ", ")
  })
  output$table <- renderTable({
    head(cars, 4)
  })

  TEMPLIST<-new.env()
  TEMPLIST$d<-d
  #Annotation Variable UI ----
  observeEvent(data.sel(),{
    output$annoVars<-renderUI({
      data.in=data.sel()
      NM=NULL

      if(any(sapply(data.in,class)=='factor')){
        NM=names(data.in)[which(sapply(data.in,class)=='factor')]  
      } 
      column(width=4,
             selectizeInput('annoVar','Annotation',choices = names(data.in),selected=NM,multiple=T,options = list(placeholder = 'select columns',plugins = list("remove_button")))
      )
    })


    #Sampling UI ----  
    output$sample<-renderUI({
      list(
        column(4,textInput(inputId = 'setSeed',label = 'Seed',value = sample(1:10000,1))),
        column(4,numericInput(inputId = 'selRows',label = 'Number of Rows',min=1,max=pmin(500,nrow(data.sel())),value = pmin(500,nrow(data.sel())))),
        column(4,selectizeInput('selCols','Columns Subset',choices = names(data.sel()),multiple=T))
      )
    })
  })

  #Data Selection UI ----
  output$data=renderUI({
    if(!is.null(input$mydata)) TEMPLIST$d=c(input$mydata$name,TEMPLIST$d)
    selData=head(TEMPLIST$d,1)
    selectInput("data","Select Data",TEMPLIST$d,selected = selData)
  })


  #Color Pallete UI ----
  output$colUI<-renderUI({

    colSel='Vidiris'
    if(input$transform_fun=='cor') colSel='RdBu'
    if(input$transform_fun=='is.na10') colSel='grey.colors'

    selectizeInput(inputId ="pal", label ="Select Color Palette",
                   choices = c('Vidiris (Sequential)'="viridis",
                               'Magma (Sequential)'="magma",
                               'Plasma (Sequential)'="plasma",
                               'Inferno (Sequential)'="inferno",
                               'Magma (Sequential)'="magma",
                               'Magma (Sequential)'="magma",

                               'RdBu (Diverging)'="RdBu",
                               'RdYlBu (Diverging)'="RdYlBu",
                               'RdYlGn (Diverging)'="RdYlGn",
                               'BrBG (Diverging)'="BrBG",
                               'Spectral (Diverging)'="Spectral",

                               'BuGn (Sequential)'='BuGn',
                               'PuBuGn (Sequential)'='PuBuGn',
                               'YlOrRd (Sequential)'='YlOrRd',
                               'Heat (Sequential)'='heat.colors',
                               'Grey (Sequential)'='grey.colors'),
                   selected=colSel)
  })

  #Manual Color Range UI ----
  output$colRng=renderUI({
    if(!is.null(data.sel())) {
      rng=range(data.sel(),na.rm = TRUE)
    }else{
      rng=range(mtcars) # TODO: this should probably be changed
    }
    # sliderInput("colorRng", "Set Color Range", min = round(rng[1],1), max = round(rng[2],1), step = .1, value = rng)  
    n_data = nrow(data.sel())

    min_min_range = ifelse(input$transform_fun=='cor',-1,-Inf)
    min_max_range = ifelse(input$transform_fun=='cor',1,rng[1])
    min_value = ifelse(input$transform_fun=='cor',-1,rng[1])

    max_min_range = ifelse(input$transform_fun=='cor',-1,rng[2])
    max_max_range = ifelse(input$transform_fun=='cor',1,Inf)
    max_value = ifelse(input$transform_fun=='cor',1,rng[2])

    a_good_step = 0.1 # (max_range-min_range) / n_data

    list(
      numericInput("colorRng_min", "Set Color Range (min)", value = min_value, min = min_min_range, max = min_max_range, step = a_good_step),
      numericInput("colorRng_max", "Set Color Range (max)", value = max_value, min = max_min_range, max = max_max_range, step = a_good_step)
    )

  })

  #Import/Select Data ----
  data.sel=eventReactive(input$data,{
    if(input$data%in%d){
      eval(parse(text=paste0('data.in=as.data.frame(datasets::',input$data,')')))
    }else{
      data.in=importSwitch(input$mydata[input$mydata$name%in%input$data,])
    }
    data.in=as.data.frame(data.in)
    # data.in=data.in[,sapply(data.in,function(x) class(x))%in%c('numeric','integer')] # no need for this
    return(data.in)
  })  

  #Building heatmaply ----
  interactiveHeatmap<- reactive({
    data.in=data.sel()
    if(input$showSample){
      if(!is.null(input$selRows)){
        set.seed(input$setSeed)
        if((input$selRows >= 2) & (input$selRows < nrow(data.in))){
          # if input$selRows == nrow(data.in) then we should not do anything (this save refreshing when clicking the subset button)
          if(length(input$selCols)<=1) data.in=data.in[sample(1:nrow(data.in),pmin(500,input$selRows)),]
          if(length(input$selCols)>1) data.in=data.in[sample(1:nrow(data.in),pmin(500,input$selRows)),input$selCols]
        }
      }
    }
    # ss_num = sapply(data.in,function(x) class(x)) %in% c('numeric','integer') # in order to only transform the numeric values

    if(length(input$annoVar)>0){
      if(all(input$annoVar%in%names(data.in))) 
        data.in <- data.in%>%mutate_at(funs(factor),.vars=vars(input$annoVar))
    } 

    ss_num =  sapply(data.in, is.numeric) # in order to only transform the numeric values

    if(input$transpose) data.in=t(data.in)
    if(input$transform_fun!='.'){
      if(input$transform_fun=='is.na10'){
        updateCheckboxInput(session = session,inputId = 'showColor',value = T)
        data.in[, ss_num]=is.na10(data.in[, ss_num])
      } 
      if(input$transform_fun=='cor'){
        updateCheckboxInput(session = session,inputId = 'showColor',value = T)
        updateCheckboxInput(session = session,inputId = 'colRngAuto',value = F)
        data.in=cor(data.in[, ss_num],use = "pairwise.complete.obs")
      }
      if(input$transform_fun=='log') data.in[, ss_num]= apply(data.in[, ss_num],2,log)
      if(input$transform_fun=='sqrt') data.in[, ss_num]= apply(data.in[, ss_num],2,sqrt) 
      if(input$transform_fun=='normalize') data.in=heatmaply::normalize(data.in)
      if(input$transform_fun=='scale') data.in[, ss_num] = scale(data.in[, ss_num])
      if(input$transform_fun=='percentize') data.in=heatmaply::percentize(data.in)
    } 



    if(!is.null(input$tables_true_search_columns)) 
      data.in=data.in[activeRows(input$tables_true_search_columns,data.in),]
    if(input$colRngAuto){
      ColLimits=NULL 
    }else{
      ColLimits=c(input$colorRng_min, input$colorRng_max)
    }

    distfun_row = function(x) dist(x, method = input$distFun_row)
    distfun_col =  function(x) dist(x, method = input$distFun_col)

    hclustfun_row = function(x) hclust(x, method = input$hclustFun_row)
    hclustfun_col = function(x) hclust(x, method = input$hclustFun_col)

    p <- heatmaply(data.in,
                   main = input$main,xlab = input$xlab,ylab = input$ylab,
                   row_text_angle = input$row_text_angle,
                   column_text_angle = input$column_text_angle,
                   dendrogram = input$dendrogram,
                   branches_lwd = input$branches_lwd,
                   seriate = input$seriation,
                   colors=eval(parse(text=paste0(input$pal,'(',input$ncol,')'))),
                   distfun_row =  distfun_row,
                   hclustfun_row = hclustfun_row,
                   distfun_col = distfun_col,
                   hclustfun_col = hclustfun_col,
                   k_col = input$c, 
                   k_row = input$r,
                   limits = ColLimits) %>% 
      layout(margin = list(l = input$l, b = input$b, r='0px'))

    p$elementId <- NULL

    p
  })

  #Render Plot ----
  observeEvent(input$data,{
    output$heatout <- renderPlotly({
      if(!is.null(input$data))
        interactiveHeatmap()
    })
  })

  #Render Data Table ----
  output$tables=DT::renderDataTable(data.sel(),server = T,filter='top',
                                    extensions = c('Scroller','FixedHeader','FixedColumns','Buttons','ColReorder'),
                                    options = list(
                                      dom = 't',
                                      buttons = c('copy', 'csv', 'excel', 'pdf', 'print','colvis'),
                                      colReorder = TRUE,
                                      scrollX = TRUE,
                                      fixedColumns = TRUE,
                                      fixedHeader = TRUE,
                                      deferRender = TRUE,
                                      scrollY = 500,
                                      scroller = TRUE
                                    ))

  #Clone Heatmap ----
  observeEvent({interactiveHeatmap()},{
    h<-interactiveHeatmap()

    l<-list(main = input$main,xlab = input$xlab,ylab = input$ylab,
            row_text_angle = input$row_text_angle,
            column_text_angle = input$column_text_angle,
            dendrogram = input$dendrogram,
            branches_lwd = input$branches_lwd,
            seriate = input$seriation,
            colors=paste0(input$pal,'(',input$ncol,')'),
            distfun_row =  input$distFun_row,
            hclustfun_row = input$hclustFun_row,
            distfun_col = input$distFun_col,
            hclustfun_col = input$hclustFun_col,
            k_col = input$c, 
            k_row = input$r,
            limits = paste(c(input$colorRng_min, input$colorRng_max),collapse=',')
    )

    #l=l[!l=='']
    l=data.frame(Parameter=names(l),Value=do.call('rbind',l),row.names = NULL,stringsAsFactors = F)
    l[which(l$Value==''),2]='NULL'
    paramTbl=print(xtable::xtable(l),type = 'html',include.rownames=FALSE,print.results = F,html.table.attributes = c('border=0'))


    h$width='100%'
    h$height='800px'
    s<-tags$div(style="position: relative; bottom: 5px;",
                HTML(paramTbl),
                tags$em('This heatmap visualization was created using',
                        tags$a(href="https://github.com/yonicd/shinyHeatmaply/",target="_blank",'shinyHeatmaply'),
                        Sys.time()
                )
    )

    output$downloadData <- downloadHandler(
      filename = function() {
        paste("heatmaply-", gsub(' ','_',Sys.time()), ".html", sep="")
      },
      content = function(file) {
        libdir <- paste(tools::file_path_sans_ext(basename(file)),"_files", sep = "")

        htmltools::save_html(htmltools::browsable(htmltools::tagList(h,s)),file=file,libdir = libdir)
        if (!htmlwidgets:::pandoc_available()) {
          stop("Saving a widget with selfcontained = TRUE requires pandoc. For details see:\n", 
               "https://github.com/rstudio/rmarkdown/blob/master/PANDOC.md")
        }

        htmlwidgets:::pandoc_self_contained_html(file, file)

        unlink(libdir, recursive = TRUE)
      }
    )
  })
  #End of Code ----
})

Thanks in advance to the hero who solves this problem. Best rewards, Daniel.

1
Without no Data to upload And no server function , no-one can reproduce your app and not see any heatmap... The only thing I could recommend is installing the dev version of ggplot2.SeGa

1 Answers

0
votes

The problem was a conflict between a conditional panel (which uses js) and the navbar page, for any reason default parameters were not read, thus autocoloring which should be enabled wasn't. I just removed this conditional panel and set always its options.