0
votes

As simple as it gets, is it possible to Stream DStream to a Kafka topic?

I have Spark streaming job which does all the data processing, now I want to push the data to a Kafka topic. Is it possible to do so in pyspark?

2

2 Answers

0
votes

better convert to json before writing to kafka otherwise specify key and value columns that are being written to kafka.

    query = jdf.selectExpr("to_json(struct(*)) AS value")\
  .writeStream\
  .format("kafka")\
  .option("zookeeper.connect", "localhost:2181")\
  .option("kafka.bootstrap.servers", "localhost:9092")\
  .option("topic", "test-spark")\
  .option("checkpointLocation", "/root/")\
  .outputMode("append")\
  .start()
0
votes

If your message in AVRO format , we can serazlie messages and write in kafka directly .

from pyspark import SparkConf, SparkContext
from kafka import KafkaProducer
from kafka.errors import KafkaError
from pyspark.sql import SQLContext, SparkSession

    from pyspark.streaming import StreamingContext
    from pyspark.streaming.kafka import KafkaUtils
    import json
    from kafka import SimpleProducer, KafkaClient
    from kafka import KafkaProducer
    from pyspark.streaming.kafka import KafkaUtils, OffsetRange, TopicAndPartition
    import avro.schema
    from confluent_kafka.avro.cached_schema_registry_client import CachedSchemaRegistryClient
    from confluent_kafka.avro.serializer.message_serializer import MessageSerializer
    import pandas as pd


    ssc = StreamingContext(sc, 2)
    ssc = StreamingContext(sc, 2)
    topic = "test"
    brokers = "localhost:9092"
    kvs = KafkaUtils.createDirectStream(ssc, [topic], {"metadata.broker.list": brokers})
    kvs.foreachRDD(handler)
    def handler(message):
        records = message.collect()
        for record in records:
             <Data processing whatever you want and creating the var_val_value,var_val_key pair >


               var_kafka_parms_tgt = {'bootstrap.servers': var_bootstrap_servr,'schema.registry.url': var_schema_url} 
               avroProducer = AvroProducer(var_kafka_parms_tgt,default_key_schema=key_schema, default_value_schema=value_schema)
               avroProducer.produce(topic=var_topic_tgt_name, value=var_val_value, key=var_val_key)
               avroProducer.flush()