It's possible to combine tensorflow with keras sequential models like this: (source)
from keras.models import Sequential, Model
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=784))
model.add(Dense(10, activation='softmax'))
# this works!
x = tf.placeholder(tf.float32, shape=(None, 784))
y = model(x)
However, I want to use the functional API like this:
x = tf.placeholder(tf.float32, shape=(None, 784))
y = Dense(10)(x)
model = Model(inputs=x, outputs=y)
but when I try to do this, I get these errors:
TypeError: Input tensors to a Model must be Keras tensors. Found: Tensor("Placeholder_2:0", shape=(?, 784), dtype=float32) (missing Keras metadata).