I am trying to draw a rotated ellipse not centered at the origin (in c++).
so far my code "works":
for (double i = 0; i <= 360; i = i + 1) {
theta = i*pi / 180;
x = (polygonList[compt]->a_coeff / 2) * sin(theta) + polygonList[compt]->centroid->datapointx;
y = (polygonList[compt]->b_coeff / 2) * cos(theta) + polygonList[compt]->centroid->datapointy;
xTmp = (x - polygonList[compt]->centroid->datapointx)* cos(angle1) - (y - polygonList[compt]->centroid->datapointy)*sin(angle1) + polygonList[compt]->centroid->datapointx;
yTmp = (x - polygonList[compt]->centroid->datapointx)* sin(angle1) + (y - polygonList[compt]->centroid->datapointy)*cos(angle1) + polygonList[compt]->centroid->datapointy;
}
PolygonList is a list of "bloc" which will be replaced by an ellipse of same area.
My issue is that the angles are not quite exact, as if I had to put a protractor that'd fit the shape of my ellipse, the protractor would obviously get squeezed, and so would be the angles (is that clear ?)
Here is an example: I am trying to set a point on the top ellipse (E1) which would be lying on a line drawn between the centroid of E1, and any point on the second ellipse (E2).On this example, the point on E2 lies at an angle of ~220-230 degree. I am able to catch this angle, the angle seems ok.
The problem is that if I try to project this point on E1 by using this angle of ~225 degree, I end up on the second red circle on top. it looks like my angle is now ~265 degree, but in fact, if I shape the protractor to fit in my ellipse, I get the right angle (~225) ,cf img 2)
it is a bit hard to see the angle on that re-shaped protractor, but it does show ~225 degree.
My conclusion is that the ellipse is drawn like if I had to drew a circle and then I'd compress it, which changes the distance between the angles.
Could someone tell me how I could fix that ?
PS: to draw those ellipses I just use a for loop which plots a dot at every angle (from 0 to 360). we clearly see on the first picture that the distance between the dots are different whether we are at 0 or at 90 degree.